基于人工蜂群和遗传算法的混合特征选择方法

M. Bindu, M. Sabu
{"title":"基于人工蜂群和遗传算法的混合特征选择方法","authors":"M. Bindu, M. Sabu","doi":"10.1109/ACCTHPA49271.2020.9213197","DOIUrl":null,"url":null,"abstract":"When data is produced in large quantities, classification requires proper techniques for data analysis and representation. Successful optimization techniques can be used to find the most informative features from the data. Feature selection enhances classification accuracy as it eliminates irrelevant and redundant data from the dataset. Swarm Intelligent algorithms, which are inspired by the social behaviour of living organisms are found to have good performance in feature selection. This paper investigates the possibility of enhancing the artificial bee colony algorithm, one of the efficient swarm intelligent techniques, by hybridizing it with the genetic algorithm. Experiments on various datasets prove that the proposed approach has better results than the existing techniques.","PeriodicalId":191794,"journal":{"name":"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Feature Selection Approach Using Artificial Bee Colony and Genetic Algorithm\",\"authors\":\"M. Bindu, M. Sabu\",\"doi\":\"10.1109/ACCTHPA49271.2020.9213197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When data is produced in large quantities, classification requires proper techniques for data analysis and representation. Successful optimization techniques can be used to find the most informative features from the data. Feature selection enhances classification accuracy as it eliminates irrelevant and redundant data from the dataset. Swarm Intelligent algorithms, which are inspired by the social behaviour of living organisms are found to have good performance in feature selection. This paper investigates the possibility of enhancing the artificial bee colony algorithm, one of the efficient swarm intelligent techniques, by hybridizing it with the genetic algorithm. Experiments on various datasets prove that the proposed approach has better results than the existing techniques.\",\"PeriodicalId\":191794,\"journal\":{\"name\":\"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCTHPA49271.2020.9213197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCTHPA49271.2020.9213197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当数据大量产生时,分类需要适当的数据分析和表示技术。成功的优化技术可以用来从数据中找到最具信息量的特征。特征选择可以消除数据集中不相关和冗余的数据,从而提高分类精度。群体智能算法受生物体的社会行为启发,在特征选择方面具有良好的性能。本文研究了一种高效的群体智能技术——人工蜂群算法与遗传算法的杂交,对其进行改进的可能性。在各种数据集上的实验证明,该方法比现有的方法具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Feature Selection Approach Using Artificial Bee Colony and Genetic Algorithm
When data is produced in large quantities, classification requires proper techniques for data analysis and representation. Successful optimization techniques can be used to find the most informative features from the data. Feature selection enhances classification accuracy as it eliminates irrelevant and redundant data from the dataset. Swarm Intelligent algorithms, which are inspired by the social behaviour of living organisms are found to have good performance in feature selection. This paper investigates the possibility of enhancing the artificial bee colony algorithm, one of the efficient swarm intelligent techniques, by hybridizing it with the genetic algorithm. Experiments on various datasets prove that the proposed approach has better results than the existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信