组织的十个故事度量标准

Mike Bonifer, Nazanin Tourani
{"title":"组织的十个故事度量标准","authors":"Mike Bonifer, Nazanin Tourani","doi":"10.1108/978-1-78635-671-020181018","DOIUrl":null,"url":null,"abstract":"Abstract Quantum storytellers understand that there are infinite patterns in large datasets that might be labeled “stories” according to the terminology of large data analytics. Big Data analysts attempt to find background stories from data. Contrastingly, we as quantum storytellers, claim that data obtained from stories are more valuable to organizations than the stories produced by data. This approach, however, faces a major challenge: veracity of subjective story analysis. Accordingly, we propose 10 metrics for the analysis of stories and mining data from similar open-ended sources in order to develop a framework that creates shared understanding of stories at workplace. The chapter proposes the metrics to launch and apply the analytic tools.","PeriodicalId":410879,"journal":{"name":"The Emerald Handbook of Quantum Storytelling Consulting","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ten Story Metrics for Organizations\",\"authors\":\"Mike Bonifer, Nazanin Tourani\",\"doi\":\"10.1108/978-1-78635-671-020181018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantum storytellers understand that there are infinite patterns in large datasets that might be labeled “stories” according to the terminology of large data analytics. Big Data analysts attempt to find background stories from data. Contrastingly, we as quantum storytellers, claim that data obtained from stories are more valuable to organizations than the stories produced by data. This approach, however, faces a major challenge: veracity of subjective story analysis. Accordingly, we propose 10 metrics for the analysis of stories and mining data from similar open-ended sources in order to develop a framework that creates shared understanding of stories at workplace. The chapter proposes the metrics to launch and apply the analytic tools.\",\"PeriodicalId\":410879,\"journal\":{\"name\":\"The Emerald Handbook of Quantum Storytelling Consulting\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Emerald Handbook of Quantum Storytelling Consulting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/978-1-78635-671-020181018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Emerald Handbook of Quantum Storytelling Consulting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/978-1-78635-671-020181018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子故事讲述者明白,根据大数据分析的术语,大数据集中存在无限的模式,这些模式可能被标记为“故事”。大数据分析师试图从数据中寻找背景故事。相比之下,我们作为量子故事讲述者,声称从故事中获得的数据比由数据产生的故事对组织更有价值。然而,这种方法面临着一个重大挑战:主观故事分析的真实性。因此,我们提出了10个度量标准,用于分析故事和从类似的开放式来源挖掘数据,以便开发一个框架,在工作场所创建对故事的共享理解。本章提出了启动和应用分析工具的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ten Story Metrics for Organizations
Abstract Quantum storytellers understand that there are infinite patterns in large datasets that might be labeled “stories” according to the terminology of large data analytics. Big Data analysts attempt to find background stories from data. Contrastingly, we as quantum storytellers, claim that data obtained from stories are more valuable to organizations than the stories produced by data. This approach, however, faces a major challenge: veracity of subjective story analysis. Accordingly, we propose 10 metrics for the analysis of stories and mining data from similar open-ended sources in order to develop a framework that creates shared understanding of stories at workplace. The chapter proposes the metrics to launch and apply the analytic tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信