基于深度联邦学习的早期ICU死亡率预测:一个真实世界的场景

Athanasios Georgoutsos, Paraskevas Kerasiotis, Verena Kantere
{"title":"基于深度联邦学习的早期ICU死亡率预测:一个真实世界的场景","authors":"Athanasios Georgoutsos, Paraskevas Kerasiotis, Verena Kantere","doi":"10.1145/3603719.3603723","DOIUrl":null,"url":null,"abstract":"The generation of large amounts of healthcare data has motivated the use of Machine Learning (ML) to train robust models for clinical tasks. However, limitations of local datasets and restrictions on sharing patient data impede the use of traditional ML workflows. Consequently, Federated Learning (FL) has emerged as a potential solution for training ML models among multiple healthcare centers. In this study, we focus on the binary classification task of early ICU mortality prediction using Multivariate Time Series data and a deep neural network architecture. We evaluate the performance of two FL algorithms (FedAvg and FedProx) on this task, utilizing a real world multi-center benchmark database. Our results show that FL models outperform local ML models in a realistic scenario with non-identically distributed data, thus indicating that FL is a promising solution for analogous problems within the healthcare domain. Nevertheless, in this experimental scenario, they do not approximate the ideal performance of a centralized ML model.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early ICU Mortality Prediction with Deep Federated Learning: A Real-World Scenario\",\"authors\":\"Athanasios Georgoutsos, Paraskevas Kerasiotis, Verena Kantere\",\"doi\":\"10.1145/3603719.3603723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of large amounts of healthcare data has motivated the use of Machine Learning (ML) to train robust models for clinical tasks. However, limitations of local datasets and restrictions on sharing patient data impede the use of traditional ML workflows. Consequently, Federated Learning (FL) has emerged as a potential solution for training ML models among multiple healthcare centers. In this study, we focus on the binary classification task of early ICU mortality prediction using Multivariate Time Series data and a deep neural network architecture. We evaluate the performance of two FL algorithms (FedAvg and FedProx) on this task, utilizing a real world multi-center benchmark database. Our results show that FL models outperform local ML models in a realistic scenario with non-identically distributed data, thus indicating that FL is a promising solution for analogous problems within the healthcare domain. Nevertheless, in this experimental scenario, they do not approximate the ideal performance of a centralized ML model.\",\"PeriodicalId\":314512,\"journal\":{\"name\":\"Proceedings of the 35th International Conference on Scientific and Statistical Database Management\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603719.3603723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量医疗数据的产生促使人们使用机器学习(ML)来训练用于临床任务的稳健模型。然而,本地数据集的局限性和对共享患者数据的限制阻碍了传统ML工作流程的使用。因此,联邦学习(FL)已成为在多个医疗保健中心训练ML模型的潜在解决方案。在本研究中,我们重点研究了使用多元时间序列数据和深度神经网络架构进行ICU早期死亡率预测的二元分类任务。我们利用真实世界的多中心基准数据库,评估了两种FL算法(fedag和FedProx)在此任务中的性能。我们的结果表明,在具有非相同分布数据的现实场景中,FL模型优于本地ML模型,从而表明FL是医疗保健领域类似问题的有前途的解决方案。然而,在这个实验场景中,它们并没有接近集中式机器学习模型的理想性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early ICU Mortality Prediction with Deep Federated Learning: A Real-World Scenario
The generation of large amounts of healthcare data has motivated the use of Machine Learning (ML) to train robust models for clinical tasks. However, limitations of local datasets and restrictions on sharing patient data impede the use of traditional ML workflows. Consequently, Federated Learning (FL) has emerged as a potential solution for training ML models among multiple healthcare centers. In this study, we focus on the binary classification task of early ICU mortality prediction using Multivariate Time Series data and a deep neural network architecture. We evaluate the performance of two FL algorithms (FedAvg and FedProx) on this task, utilizing a real world multi-center benchmark database. Our results show that FL models outperform local ML models in a realistic scenario with non-identically distributed data, thus indicating that FL is a promising solution for analogous problems within the healthcare domain. Nevertheless, in this experimental scenario, they do not approximate the ideal performance of a centralized ML model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信