基于SPEED/PC-IMD的感应电机设计成本最小化及其实现

C. T. Raj, S. P. Srivastava, P. Agarwal
{"title":"基于SPEED/PC-IMD的感应电机设计成本最小化及其实现","authors":"C. T. Raj, S. P. Srivastava, P. Agarwal","doi":"10.1109/INDCON.2008.4768799","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal design of poly-phase induction motor using Particle Swarm Optimization (PSO). The optimization algorithm considers the cost of active material as objective function and nine performance related items as constraints. The PSO algorithm was implemented on two test motors (7.5 kW and 110 kW) and their results are compared with the Constrained Rosen Brock Method (Hill algorithm) and normal design. Optimized variables are realized by SPEED (Scottish Power Electronics and Electric Drives) software. Optimal design results are theoretically justified. Some standard benchmarking problems are used to validate the PSO algorithm. C++ code is used for implementing entire algorithms.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost minimization and its realization on induction motor design via SPEED/PC-IMD\",\"authors\":\"C. T. Raj, S. P. Srivastava, P. Agarwal\",\"doi\":\"10.1109/INDCON.2008.4768799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimal design of poly-phase induction motor using Particle Swarm Optimization (PSO). The optimization algorithm considers the cost of active material as objective function and nine performance related items as constraints. The PSO algorithm was implemented on two test motors (7.5 kW and 110 kW) and their results are compared with the Constrained Rosen Brock Method (Hill algorithm) and normal design. Optimized variables are realized by SPEED (Scottish Power Electronics and Electric Drives) software. Optimal design results are theoretically justified. Some standard benchmarking problems are used to validate the PSO algorithm. C++ code is used for implementing entire algorithms.\",\"PeriodicalId\":196254,\"journal\":{\"name\":\"2008 Annual IEEE India Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2008.4768799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于粒子群算法的多相感应电动机优化设计方法。优化算法以活性材料成本为目标函数,以九个性能相关项为约束条件。在两台7.5 kW和110 kW的测试电机上实现了PSO算法,并将其结果与约束Rosen Brock方法(Hill算法)和常规设计进行了比较。优化变量由SPEED (Scottish Power Electronics and Electric Drives)软件实现。优化设计结果在理论上是合理的。采用一些标准的基准测试问题来验证粒子群算法。c++代码用于实现整个算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost minimization and its realization on induction motor design via SPEED/PC-IMD
This paper presents an optimal design of poly-phase induction motor using Particle Swarm Optimization (PSO). The optimization algorithm considers the cost of active material as objective function and nine performance related items as constraints. The PSO algorithm was implemented on two test motors (7.5 kW and 110 kW) and their results are compared with the Constrained Rosen Brock Method (Hill algorithm) and normal design. Optimized variables are realized by SPEED (Scottish Power Electronics and Electric Drives) software. Optimal design results are theoretically justified. Some standard benchmarking problems are used to validate the PSO algorithm. C++ code is used for implementing entire algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信