基于SyDR的FPGA GNSS算法基准测试

Antoine Grenier, Hans Jakob Damsgaard, Jie Lei, E. S. Quintana‐Ortí, A. Ometov, E. Lohan, J. Nurmi
{"title":"基于SyDR的FPGA GNSS算法基准测试","authors":"Antoine Grenier, Hans Jakob Damsgaard, Jie Lei, E. S. Quintana‐Ortí, A. Ometov, E. Lohan, J. Nurmi","doi":"10.1109/ICL-GNSS57829.2023.10148916","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available off-the-shelf, each tailored to match various applications’ requirements. Being implemented as Application-Specific Integrated Circuits, these chips provide good performance and low energy consumption but must be treated as \"black boxes\" by customers. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing techniques), and design-space exploration for finding the optimal receiver implementation per each use case. In this paper, we review the development of SyDR, an open-source Software-Defined Radio oriented towards benchmarking of GNSS algorithms. Specifically, our goal is to integrate certain components of the GNSS processing chain in a Field-Programmable Gate Array and manage their operation with a Python program using the Xilinx PYNQ flow. We present the early steps of converting parts of SyDR to C, which will be later converted to Hardware Description Language descriptions using High-Level Synthesis. We demonstrate successful conversion of the tracking process and discuss benefits and drawbacks arising thereof, before outlining next steps in preparation for hardware implementation.","PeriodicalId":414612,"journal":{"name":"2023 International Conference on Localization and GNSS (ICL-GNSS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Benchmarking GNSS Algorithms on FPGA using SyDR\",\"authors\":\"Antoine Grenier, Hans Jakob Damsgaard, Jie Lei, E. S. Quintana‐Ortí, A. Ometov, E. Lohan, J. Nurmi\",\"doi\":\"10.1109/ICL-GNSS57829.2023.10148916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available off-the-shelf, each tailored to match various applications’ requirements. Being implemented as Application-Specific Integrated Circuits, these chips provide good performance and low energy consumption but must be treated as \\\"black boxes\\\" by customers. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing techniques), and design-space exploration for finding the optimal receiver implementation per each use case. In this paper, we review the development of SyDR, an open-source Software-Defined Radio oriented towards benchmarking of GNSS algorithms. Specifically, our goal is to integrate certain components of the GNSS processing chain in a Field-Programmable Gate Array and manage their operation with a Python program using the Xilinx PYNQ flow. We present the early steps of converting parts of SyDR to C, which will be later converted to Hardware Description Language descriptions using High-Level Synthesis. We demonstrate successful conversion of the tracking process and discuss benefits and drawbacks arising thereof, before outlining next steps in preparation for hardware implementation.\",\"PeriodicalId\":414612,\"journal\":{\"name\":\"2023 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS57829.2023.10148916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS57829.2023.10148916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统(GNSS)目前被广泛用于定位和授时目的。许多不同的接收器芯片都是现成的,每一个都是根据不同的应用需求量身定制的。作为专用集成电路实现,这些芯片提供了良好的性能和低能耗,但必须被客户视为“黑盒子”。这阻止了修改,GNSS处理链增强研究(例如,近似计算技术的应用),以及针对每个用例寻找最佳接收器实现的设计空间探索。在本文中,我们回顾了SyDR的发展,SyDR是一种面向GNSS算法基准测试的开源软件定义无线电。具体来说,我们的目标是在现场可编程门阵列中集成GNSS处理链的某些组件,并使用Xilinx PYNQ流使用Python程序管理它们的操作。我们介绍了将SyDR部分转换为C语言的早期步骤,稍后将使用高级合成将其转换为硬件描述语言描述。我们演示了跟踪过程的成功转换,并讨论了由此产生的好处和缺点,然后概述了准备硬件实现的下一步步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Benchmarking GNSS Algorithms on FPGA using SyDR
Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available off-the-shelf, each tailored to match various applications’ requirements. Being implemented as Application-Specific Integrated Circuits, these chips provide good performance and low energy consumption but must be treated as "black boxes" by customers. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing techniques), and design-space exploration for finding the optimal receiver implementation per each use case. In this paper, we review the development of SyDR, an open-source Software-Defined Radio oriented towards benchmarking of GNSS algorithms. Specifically, our goal is to integrate certain components of the GNSS processing chain in a Field-Programmable Gate Array and manage their operation with a Python program using the Xilinx PYNQ flow. We present the early steps of converting parts of SyDR to C, which will be later converted to Hardware Description Language descriptions using High-Level Synthesis. We demonstrate successful conversion of the tracking process and discuss benefits and drawbacks arising thereof, before outlining next steps in preparation for hardware implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信