一种具有历史最佳点的改进人工蜂群算法

Xingyu Xia, Xi Wang, Haidong Hu, Dongmei Wu, Hao Gao
{"title":"一种具有历史最佳点的改进人工蜂群算法","authors":"Xingyu Xia, Xi Wang, Haidong Hu, Dongmei Wu, Hao Gao","doi":"10.1109/CCDC.2018.8407519","DOIUrl":null,"url":null,"abstract":"Depending on the power global search ability, artificial bee colony algorithm attracts more attentions in recent years. But its slow convergence rate constraints its development. To better balance its exploration and exploitation abilities, we define a new point named as mean history best points (MHB) to lead the direction of bee population. The numerical experiments on the basic benchmark functions validate the efficiency of our algorithm.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved artificial bee colony algorithm with history best points\",\"authors\":\"Xingyu Xia, Xi Wang, Haidong Hu, Dongmei Wu, Hao Gao\",\"doi\":\"10.1109/CCDC.2018.8407519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on the power global search ability, artificial bee colony algorithm attracts more attentions in recent years. But its slow convergence rate constraints its development. To better balance its exploration and exploitation abilities, we define a new point named as mean history best points (MHB) to lead the direction of bee population. The numerical experiments on the basic benchmark functions validate the efficiency of our algorithm.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工蜂群算法凭借强大的全局搜索能力,近年来受到越来越多的关注。但其缓慢的收敛速度制约了其发展。为了更好地平衡其探索和开发能力,我们定义了一个新的点,称为平均历史最佳点(MHB),以引导蜜蜂种群的方向。在基本基准函数上的数值实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved artificial bee colony algorithm with history best points
Depending on the power global search ability, artificial bee colony algorithm attracts more attentions in recent years. But its slow convergence rate constraints its development. To better balance its exploration and exploitation abilities, we define a new point named as mean history best points (MHB) to lead the direction of bee population. The numerical experiments on the basic benchmark functions validate the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信