切线- cft:数学公式的嵌入模型

Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C. Lee Giles, R. Zanibbi
{"title":"切线- cft:数学公式的嵌入模型","authors":"Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C. Lee Giles, R. Zanibbi","doi":"10.1145/3341981.3344235","DOIUrl":null,"url":null,"abstract":"When searching for mathematical content, accurate measures of formula similarity can help with tasks such as document ranking, query recommendation, and result set clustering. While there have been many attempts at embedding words and graphs, formula embedding is in its early stages. We introduce a new formula embedding model that we use with two hierarchical representations, (1) Symbol Layout Trees (SLTs) for appearance, and (2) Operator Trees (OPTs) for mathematical content. Following the approach of graph embeddings such as DeepWalk, we generate tuples representing paths between pairs of symbols depth-first, embed tuples using the fastText n-gram embedding model, and then represent an SLT or OPT by its average tuple embedding vector. We then combine SLT and OPT embeddings, leading to state-of-the-art results for the NTCIR-12 formula retrieval task. Our fine-grained holistic vector representations allow us to retrieve many more partially similar formulas than methods using structural matching in trees. Combining our embedding model with structural matching in the Approach0 formula search engine produces state-of-the-art results for both fully and partially relevant results on the NTCIR-12 benchmark. Source code for our system is publicly available.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Tangent-CFT: An Embedding Model for Mathematical Formulas\",\"authors\":\"Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C. Lee Giles, R. Zanibbi\",\"doi\":\"10.1145/3341981.3344235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When searching for mathematical content, accurate measures of formula similarity can help with tasks such as document ranking, query recommendation, and result set clustering. While there have been many attempts at embedding words and graphs, formula embedding is in its early stages. We introduce a new formula embedding model that we use with two hierarchical representations, (1) Symbol Layout Trees (SLTs) for appearance, and (2) Operator Trees (OPTs) for mathematical content. Following the approach of graph embeddings such as DeepWalk, we generate tuples representing paths between pairs of symbols depth-first, embed tuples using the fastText n-gram embedding model, and then represent an SLT or OPT by its average tuple embedding vector. We then combine SLT and OPT embeddings, leading to state-of-the-art results for the NTCIR-12 formula retrieval task. Our fine-grained holistic vector representations allow us to retrieve many more partially similar formulas than methods using structural matching in trees. Combining our embedding model with structural matching in the Approach0 formula search engine produces state-of-the-art results for both fully and partially relevant results on the NTCIR-12 benchmark. Source code for our system is publicly available.\",\"PeriodicalId\":173154,\"journal\":{\"name\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341981.3344235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

在搜索数学内容时,公式相似度的精确度量可以帮助完成文档排序、查询推荐和结果集聚类等任务。虽然有很多嵌入文字和图形的尝试,但公式嵌入还处于早期阶段。我们引入了一种新的公式嵌入模型,我们使用两种层次表示,(1)符号布局树(slt)用于外观,(2)算子树(opt)用于数学内容。遵循DeepWalk等图嵌入方法,我们深度优先生成表示符号对之间路径的元组,使用fastText n-gram嵌入模型嵌入元组,然后用其平均元组嵌入向量表示SLT或OPT。然后,我们将SLT和OPT嵌入结合起来,为ntir -12公式检索任务提供最先进的结果。与在树中使用结构匹配的方法相比,我们的细粒度整体向量表示允许我们检索更多部分相似的公式。将我们的嵌入模型与apach0公式中的结构匹配相结合,搜索引擎可以为ntir -12基准上的完全和部分相关结果产生最先进的结果。我们系统的源代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tangent-CFT: An Embedding Model for Mathematical Formulas
When searching for mathematical content, accurate measures of formula similarity can help with tasks such as document ranking, query recommendation, and result set clustering. While there have been many attempts at embedding words and graphs, formula embedding is in its early stages. We introduce a new formula embedding model that we use with two hierarchical representations, (1) Symbol Layout Trees (SLTs) for appearance, and (2) Operator Trees (OPTs) for mathematical content. Following the approach of graph embeddings such as DeepWalk, we generate tuples representing paths between pairs of symbols depth-first, embed tuples using the fastText n-gram embedding model, and then represent an SLT or OPT by its average tuple embedding vector. We then combine SLT and OPT embeddings, leading to state-of-the-art results for the NTCIR-12 formula retrieval task. Our fine-grained holistic vector representations allow us to retrieve many more partially similar formulas than methods using structural matching in trees. Combining our embedding model with structural matching in the Approach0 formula search engine produces state-of-the-art results for both fully and partially relevant results on the NTCIR-12 benchmark. Source code for our system is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信