A. C. Godinho, C. M. Nunes, R. I. Meneguette, V. P. Gonçalves, Marlos André M. S. de Oliveira, J. Oliveira, Geraldo P. Rocha Filho
{"title":"STALLA: Covid-19大流行期间开源分析框架","authors":"A. C. Godinho, C. M. Nunes, R. I. Meneguette, V. P. Gonçalves, Marlos André M. S. de Oliveira, J. Oliveira, Geraldo P. Rocha Filho","doi":"10.5753/courb.2023.731","DOIUrl":null,"url":null,"abstract":"A expansão das redes sociais resultou em um aumento na distribuição de campanhas de desinformação, que colocam em risco a estabilidade democrática nacional, tornando-se um elemento desfavorável para a produção do conhecimento de Inteligência. Com o objetivo de mitigar este óbice, foi proposto o framework STALLA para coleta, tratamento, rotulação automatizada e análise de informações, proporcionando maior eficiência na produção do conhecimento. Assim, o estudo tem por escopo a pandemia do Covid-19, a partir de dados coletados de textos curtos (tweets), no idioma português, da rede social Twitter. Considerando-se os trabalhos correlatos, as Redes Neurais Recorrentes (RNN) apresentam-se como as mais vocacionadas para análises textuais. A partir dessa premissa, o desempenho do STALLA foi analisado comparando-se as implementações das redes LSTM e BiLSTM, resultando em uma acurácia de aproximadamente 70%.","PeriodicalId":277232,"journal":{"name":"Anais do VII Workshop de Computação Urbana (CoUrb 2023)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STALLA: Um Framework para Análise de Fontes Abertas durante a Pandemia do Covid-19\",\"authors\":\"A. C. Godinho, C. M. Nunes, R. I. Meneguette, V. P. Gonçalves, Marlos André M. S. de Oliveira, J. Oliveira, Geraldo P. Rocha Filho\",\"doi\":\"10.5753/courb.2023.731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A expansão das redes sociais resultou em um aumento na distribuição de campanhas de desinformação, que colocam em risco a estabilidade democrática nacional, tornando-se um elemento desfavorável para a produção do conhecimento de Inteligência. Com o objetivo de mitigar este óbice, foi proposto o framework STALLA para coleta, tratamento, rotulação automatizada e análise de informações, proporcionando maior eficiência na produção do conhecimento. Assim, o estudo tem por escopo a pandemia do Covid-19, a partir de dados coletados de textos curtos (tweets), no idioma português, da rede social Twitter. Considerando-se os trabalhos correlatos, as Redes Neurais Recorrentes (RNN) apresentam-se como as mais vocacionadas para análises textuais. A partir dessa premissa, o desempenho do STALLA foi analisado comparando-se as implementações das redes LSTM e BiLSTM, resultando em uma acurácia de aproximadamente 70%.\",\"PeriodicalId\":277232,\"journal\":{\"name\":\"Anais do VII Workshop de Computação Urbana (CoUrb 2023)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do VII Workshop de Computação Urbana (CoUrb 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/courb.2023.731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VII Workshop de Computação Urbana (CoUrb 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2023.731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STALLA: Um Framework para Análise de Fontes Abertas durante a Pandemia do Covid-19
A expansão das redes sociais resultou em um aumento na distribuição de campanhas de desinformação, que colocam em risco a estabilidade democrática nacional, tornando-se um elemento desfavorável para a produção do conhecimento de Inteligência. Com o objetivo de mitigar este óbice, foi proposto o framework STALLA para coleta, tratamento, rotulação automatizada e análise de informações, proporcionando maior eficiência na produção do conhecimento. Assim, o estudo tem por escopo a pandemia do Covid-19, a partir de dados coletados de textos curtos (tweets), no idioma português, da rede social Twitter. Considerando-se os trabalhos correlatos, as Redes Neurais Recorrentes (RNN) apresentam-se como as mais vocacionadas para análises textuais. A partir dessa premissa, o desempenho do STALLA foi analisado comparando-se as implementações das redes LSTM e BiLSTM, resultando em uma acurácia de aproximadamente 70%.