密集张量-时间-矩阵乘法的输入自适应就地方法

Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, R. Vuduc
{"title":"密集张量-时间-矩阵乘法的输入自适应就地方法","authors":"Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, R. Vuduc","doi":"10.1145/2807591.2807671","DOIUrl":null,"url":null,"abstract":"This paper describes a novel framework, called I<scp>n</scp>T<scp>ens</scp>L<scp>i</scp> (\"intensely\"), for producing fast single-node implementations of dense tensor-times-matrix multiply (T<scp>tm</scp>) of arbitrary dimension. Whereas conventional implementations of T<scp>tm</scp> rely on explicitly converting the input tensor operand into a matrix---in order to be able to use any available and fast general matrix-matrix multiply (G<scp>emm</scp>) implementation---our framework's strategy is to carry out the T<scp>tm</scp> <i>in-place</i>, avoiding this copy. As the resulting implementations expose tuning parameters, this paper also describes a heuristic empirical model for selecting an optimal configuration based on the T<scp>tm</scp>'s inputs. When compared to widely used single-node T<scp>tm</scp> implementations that are available in the Tensor Toolbox and Cyclops Tensor Framework (C<scp>tf</scp>), In-TensLi's in-place and input-adaptive T<scp>tm</scp> implementations achieve 4× and 13× speedups, showing Gemm-like performance on a variety of input sizes.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"An input-adaptive and in-place approach to dense tensor-times-matrix multiply\",\"authors\":\"Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, R. Vuduc\",\"doi\":\"10.1145/2807591.2807671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel framework, called I<scp>n</scp>T<scp>ens</scp>L<scp>i</scp> (\\\"intensely\\\"), for producing fast single-node implementations of dense tensor-times-matrix multiply (T<scp>tm</scp>) of arbitrary dimension. Whereas conventional implementations of T<scp>tm</scp> rely on explicitly converting the input tensor operand into a matrix---in order to be able to use any available and fast general matrix-matrix multiply (G<scp>emm</scp>) implementation---our framework's strategy is to carry out the T<scp>tm</scp> <i>in-place</i>, avoiding this copy. As the resulting implementations expose tuning parameters, this paper also describes a heuristic empirical model for selecting an optimal configuration based on the T<scp>tm</scp>'s inputs. When compared to widely used single-node T<scp>tm</scp> implementations that are available in the Tensor Toolbox and Cyclops Tensor Framework (C<scp>tf</scp>), In-TensLi's in-place and input-adaptive T<scp>tm</scp> implementations achieve 4× and 13× speedups, showing Gemm-like performance on a variety of input sizes.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

本文描述了一个新的框架,称为InTensLi(“强烈”),用于生成任意维的密集张量乘以矩阵乘法(Ttm)的快速单节点实现。传统的Ttm实现依赖于显式地将输入张量操作数转换为矩阵——为了能够使用任何可用的、快速的一般矩阵-矩阵乘法(Gemm)实现——我们框架的策略是就地执行Ttm,避免这种复制。由于结果实现暴露了调优参数,本文还描述了一个启发式经验模型,用于根据Ttm的输入选择最优配置。与在张量工具箱和Cyclops张量框架(Ctf)中广泛使用的单节点Ttm实现相比,in- tensli的就地和输入自适应Ttm实现实现了4倍和13倍的速度提升,在各种输入大小上显示出类似gem的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An input-adaptive and in-place approach to dense tensor-times-matrix multiply
This paper describes a novel framework, called InTensLi ("intensely"), for producing fast single-node implementations of dense tensor-times-matrix multiply (Ttm) of arbitrary dimension. Whereas conventional implementations of Ttm rely on explicitly converting the input tensor operand into a matrix---in order to be able to use any available and fast general matrix-matrix multiply (Gemm) implementation---our framework's strategy is to carry out the Ttm in-place, avoiding this copy. As the resulting implementations expose tuning parameters, this paper also describes a heuristic empirical model for selecting an optimal configuration based on the Ttm's inputs. When compared to widely used single-node Ttm implementations that are available in the Tensor Toolbox and Cyclops Tensor Framework (Ctf), In-TensLi's in-place and input-adaptive Ttm implementations achieve 4× and 13× speedups, showing Gemm-like performance on a variety of input sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信