慢HTTP分布式拒绝服务攻击分类的基于流的机器学习方法

N. Muraleedharan, B. Janet
{"title":"慢HTTP分布式拒绝服务攻击分类的基于流的机器学习方法","authors":"N. Muraleedharan, B. Janet","doi":"10.1504/IJCSE.2021.115101","DOIUrl":null,"url":null,"abstract":"Distributed denial of service (DDoS) attack is one of the common threats to the availability of services on the internet. The DDoS attacks are evolved from volumetric attack to slow DDoS. Unlike the volumetric DDoS attack, the slow DDoS traffic rate looks similar to the normal traffic. Hence, it is difficult to detect using traditional security mechanism. In this paper, we propose a flow-based classification model for slow HTTP DDoS traffic. The important flow level features were selected using CICIDS2017 dataset. Impacts of time, packet length and transmission rate for slow DDoS are analysed. Using the selected features, three classification models were trained and evaluated using two benchmark datasets. The results obtained reveal the proposed classifiers can achieve higher accuracy of 0.997 using RF classifiers. A comparison of the results obtained with state-of-the-art approaches shows that the proposed approach can improve the detection rate by 19.7%.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Flow-based machine learning approach for slow HTTP distributed denial of service attack classification\",\"authors\":\"N. Muraleedharan, B. Janet\",\"doi\":\"10.1504/IJCSE.2021.115101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed denial of service (DDoS) attack is one of the common threats to the availability of services on the internet. The DDoS attacks are evolved from volumetric attack to slow DDoS. Unlike the volumetric DDoS attack, the slow DDoS traffic rate looks similar to the normal traffic. Hence, it is difficult to detect using traditional security mechanism. In this paper, we propose a flow-based classification model for slow HTTP DDoS traffic. The important flow level features were selected using CICIDS2017 dataset. Impacts of time, packet length and transmission rate for slow DDoS are analysed. Using the selected features, three classification models were trained and evaluated using two benchmark datasets. The results obtained reveal the proposed classifiers can achieve higher accuracy of 0.997 using RF classifiers. A comparison of the results obtained with state-of-the-art approaches shows that the proposed approach can improve the detection rate by 19.7%.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2021.115101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分布式拒绝服务(DDoS)攻击是对互联网上服务可用性的常见威胁之一。DDoS攻击从容量攻击发展到慢速DDoS攻击。慢速DDoS攻击与容量型DDoS攻击不同,其流量速率与正常流量相似。因此,使用传统的安全机制很难进行检测。在本文中,我们提出了一个基于流的慢HTTP DDoS流量分类模型。使用CICIDS2017数据集选择重要的流量级别特征。分析了时间、数据包长度和传输速率对慢速DDoS攻击的影响。使用选择的特征,使用两个基准数据集训练和评估三个分类模型。结果表明,本文提出的分类器使用射频分类器可以达到较高的准确率0.997。与现有方法的结果比较表明,该方法可将检测率提高19.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-based machine learning approach for slow HTTP distributed denial of service attack classification
Distributed denial of service (DDoS) attack is one of the common threats to the availability of services on the internet. The DDoS attacks are evolved from volumetric attack to slow DDoS. Unlike the volumetric DDoS attack, the slow DDoS traffic rate looks similar to the normal traffic. Hence, it is difficult to detect using traditional security mechanism. In this paper, we propose a flow-based classification model for slow HTTP DDoS traffic. The important flow level features were selected using CICIDS2017 dataset. Impacts of time, packet length and transmission rate for slow DDoS are analysed. Using the selected features, three classification models were trained and evaluated using two benchmark datasets. The results obtained reveal the proposed classifiers can achieve higher accuracy of 0.997 using RF classifiers. A comparison of the results obtained with state-of-the-art approaches shows that the proposed approach can improve the detection rate by 19.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信