概率密度计算器的推导(功能珍珠)

W. Ismail, Chung-chieh Shan
{"title":"概率密度计算器的推导(功能珍珠)","authors":"W. Ismail, Chung-chieh Shan","doi":"10.1145/2951913.2951922","DOIUrl":null,"url":null,"abstract":"Given an expression that denotes a probability distribution, often we want a corresponding density function, to use in probabilistic inference. Fortunately, the task of finding a density has been automated. It turns out that we can derive a compositional procedure for finding a density, by equational reasoning about integrals, starting with the mathematical specification of what a density is. Moreover, the density found can be run as an estimation algorithm, as well as simplified as an exact formula to improve the estimate.","PeriodicalId":336660,"journal":{"name":"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deriving a probability density calculator (functional pearl)\",\"authors\":\"W. Ismail, Chung-chieh Shan\",\"doi\":\"10.1145/2951913.2951922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an expression that denotes a probability distribution, often we want a corresponding density function, to use in probabilistic inference. Fortunately, the task of finding a density has been automated. It turns out that we can derive a compositional procedure for finding a density, by equational reasoning about integrals, starting with the mathematical specification of what a density is. Moreover, the density found can be run as an estimation algorithm, as well as simplified as an exact formula to improve the estimate.\",\"PeriodicalId\":336660,\"journal\":{\"name\":\"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2951913.2951922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2951913.2951922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给定一个表示概率分布的表达式,我们通常需要一个相应的密度函数,用于概率推理。幸运的是,寻找密度的任务已经自动化了。我们可以推导出一种求密度的组合方法,通过对积分的方程推理,从密度的数学定义开始。此外,找到的密度可以作为一种估计算法运行,也可以简化为精确的公式来改进估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving a probability density calculator (functional pearl)
Given an expression that denotes a probability distribution, often we want a corresponding density function, to use in probabilistic inference. Fortunately, the task of finding a density has been automated. It turns out that we can derive a compositional procedure for finding a density, by equational reasoning about integrals, starting with the mathematical specification of what a density is. Moreover, the density found can be run as an estimation algorithm, as well as simplified as an exact formula to improve the estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信