基于标题和描述文本的YouTube视频分类

Gurjyot Singh Kalra, Ramandeep Singh Kathuria, Amit Kumar
{"title":"基于标题和描述文本的YouTube视频分类","authors":"Gurjyot Singh Kalra, Ramandeep Singh Kathuria, Amit Kumar","doi":"10.1109/ICCCIS48478.2019.8974514","DOIUrl":null,"url":null,"abstract":"YouTube has a library of millions if not billions of videos and keeping a track of the types of videos for effective retrieval and use can be quite difficult. YouTube videos can be classified into different classes based on the title and descriptions of the videos. To classify so many videos, an effective scalable algorithm is required. This can be achieved by using a Random Forest Classifier along with Natural Language Processing techniques like Bag of Words, Word Stemming etc. This paper also discusses method to scrape YouTube videos using packages like selenium, requests and Beautiful Soup for videos and their metadata. At the end we discuss various evaluation metrics for Random Forest Classifiers.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"YouTube Video Classification based on Title and Description Text\",\"authors\":\"Gurjyot Singh Kalra, Ramandeep Singh Kathuria, Amit Kumar\",\"doi\":\"10.1109/ICCCIS48478.2019.8974514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"YouTube has a library of millions if not billions of videos and keeping a track of the types of videos for effective retrieval and use can be quite difficult. YouTube videos can be classified into different classes based on the title and descriptions of the videos. To classify so many videos, an effective scalable algorithm is required. This can be achieved by using a Random Forest Classifier along with Natural Language Processing techniques like Bag of Words, Word Stemming etc. This paper also discusses method to scrape YouTube videos using packages like selenium, requests and Beautiful Soup for videos and their metadata. At the end we discuss various evaluation metrics for Random Forest Classifiers.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

YouTube拥有数以百万计(如果不是数十亿的话)的视频库,为了有效地检索和使用而跟踪视频类型是相当困难的。根据视频的标题和描述,YouTube视频可以分为不同的类别。为了对如此多的视频进行分类,需要一种有效的可扩展算法。这可以通过使用随机森林分类器和自然语言处理技术(如单词袋、单词词干提取等)来实现。本文还讨论了使用selenium、requests和Beautiful Soup等包抓取YouTube视频及其元数据的方法。最后讨论了随机森林分类器的各种评价指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YouTube Video Classification based on Title and Description Text
YouTube has a library of millions if not billions of videos and keeping a track of the types of videos for effective retrieval and use can be quite difficult. YouTube videos can be classified into different classes based on the title and descriptions of the videos. To classify so many videos, an effective scalable algorithm is required. This can be achieved by using a Random Forest Classifier along with Natural Language Processing techniques like Bag of Words, Word Stemming etc. This paper also discusses method to scrape YouTube videos using packages like selenium, requests and Beautiful Soup for videos and their metadata. At the end we discuss various evaluation metrics for Random Forest Classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信