对德国所得税税率的插值方法进行了说明

ERN: Taxation Pub Date : 2006-09-01 DOI:10.2139/ssrn.1047661
S. Schanz
{"title":"对德国所得税税率的插值方法进行了说明","authors":"S. Schanz","doi":"10.2139/ssrn.1047661","DOIUrl":null,"url":null,"abstract":"Increasing complexity of economic models evolve optimization problems that are not differentiable any more. To solve that problems heuristic optimization or approximation methods have to be used. In this article three methods of polynomial interpolations are summarized and explained. The three methods are in detail the Lagrange interpolation method, the Newton interpolation method and the interpolation using the monomial basis. The advantages and disadvantages of approximation methods such as the polynomial interpolation are illustrated by approximating the German income tariff function.","PeriodicalId":105680,"journal":{"name":"ERN: Taxation","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of interpolations illustrated on the interpolation of the German income tax tariff\",\"authors\":\"S. Schanz\",\"doi\":\"10.2139/ssrn.1047661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing complexity of economic models evolve optimization problems that are not differentiable any more. To solve that problems heuristic optimization or approximation methods have to be used. In this article three methods of polynomial interpolations are summarized and explained. The three methods are in detail the Lagrange interpolation method, the Newton interpolation method and the interpolation using the monomial basis. The advantages and disadvantages of approximation methods such as the polynomial interpolation are illustrated by approximating the German income tariff function.\",\"PeriodicalId\":105680,\"journal\":{\"name\":\"ERN: Taxation\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Taxation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1047661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Taxation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1047661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着经济模型复杂性的不断增加,优化问题逐渐演化为不可微问题。为了解决这些问题,必须使用启发式优化或近似方法。本文对多项式插值的三种方法进行了总结和说明。这三种方法分别是拉格朗日插值法、牛顿插值法和单项式基插值法。通过近似德国收入关税函数说明了多项式插值等近似方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods of interpolations illustrated on the interpolation of the German income tax tariff
Increasing complexity of economic models evolve optimization problems that are not differentiable any more. To solve that problems heuristic optimization or approximation methods have to be used. In this article three methods of polynomial interpolations are summarized and explained. The three methods are in detail the Lagrange interpolation method, the Newton interpolation method and the interpolation using the monomial basis. The advantages and disadvantages of approximation methods such as the polynomial interpolation are illustrated by approximating the German income tariff function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信