无线设备中的射频脱敏

C. Hwang
{"title":"无线设备中的射频脱敏","authors":"C. Hwang","doi":"10.5772/INTECHOPEN.76162","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT), where data are exchanged via wireless connection between devices, is rapidly becoming inextricable from our daily lives. A variety of IoT devices ranging from smart homes to autonomous vehicles and health care have grown explo- sively. While wireless communication makes the devices conveniently connected, it also makes them inherently vulnerable to electromagnetic interference (EMI). Any radio fre- quency (RF) antenna used as a radio receiver can easily pick up the unintended electromagnetic noise from integrated circuits (ICs) populated within the same device. The radio range is limited by interference, called RF desensitization, which in turn often limits the usefulness of IoT devices. While the amount of EMI can be estimated using numeri- cal simulations tools like HFSS and CST, engineering issues such as where to place the IC or setting the radiation specification of the IC cannot be so easily addressed. In this chapter, an insightful and efficient RF desensitization model necessary to estimate EMI levels on RF antennas will be addressed. The approach will be focused on two represen- tative areas: noise radiation source modeling and coupling estimation associated with an embedded RF antenna.","PeriodicalId":281802,"journal":{"name":"RF Systems, Circuits and Components","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"RF Desensitization in Wireless Devices\",\"authors\":\"C. Hwang\",\"doi\":\"10.5772/INTECHOPEN.76162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT), where data are exchanged via wireless connection between devices, is rapidly becoming inextricable from our daily lives. A variety of IoT devices ranging from smart homes to autonomous vehicles and health care have grown explo- sively. While wireless communication makes the devices conveniently connected, it also makes them inherently vulnerable to electromagnetic interference (EMI). Any radio fre- quency (RF) antenna used as a radio receiver can easily pick up the unintended electromagnetic noise from integrated circuits (ICs) populated within the same device. The radio range is limited by interference, called RF desensitization, which in turn often limits the usefulness of IoT devices. While the amount of EMI can be estimated using numeri- cal simulations tools like HFSS and CST, engineering issues such as where to place the IC or setting the radiation specification of the IC cannot be so easily addressed. In this chapter, an insightful and efficient RF desensitization model necessary to estimate EMI levels on RF antennas will be addressed. The approach will be focused on two represen- tative areas: noise radiation source modeling and coupling estimation associated with an embedded RF antenna.\",\"PeriodicalId\":281802,\"journal\":{\"name\":\"RF Systems, Circuits and Components\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RF Systems, Circuits and Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RF Systems, Circuits and Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过设备之间的无线连接交换数据的物联网(IoT)正迅速成为我们日常生活中不可或缺的一部分。从智能家居到自动驾驶汽车和医疗保健等各种物联网设备都在爆炸式增长。虽然无线通信使设备方便地连接,但它也使它们天生容易受到电磁干扰(EMI)。任何用作无线电接收器的射频(RF)天线都可以很容易地接收到来自同一设备内集成电路(ic)的意外电磁噪声。无线电范围受到干扰的限制,称为射频脱敏,这反过来又限制了物联网设备的实用性。虽然可以使用HFSS和CST等数值模拟工具来估计EMI的数量,但诸如IC放置位置或设置IC的辐射规格等工程问题无法如此容易地解决。在本章中,将讨论一个有洞察力和有效的射频脱敏模型,该模型用于估计射频天线上的EMI水平。该方法将集中在两个代表性领域:噪声辐射源建模和与嵌入式射频天线相关的耦合估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RF Desensitization in Wireless Devices
The Internet of Things (IoT), where data are exchanged via wireless connection between devices, is rapidly becoming inextricable from our daily lives. A variety of IoT devices ranging from smart homes to autonomous vehicles and health care have grown explo- sively. While wireless communication makes the devices conveniently connected, it also makes them inherently vulnerable to electromagnetic interference (EMI). Any radio fre- quency (RF) antenna used as a radio receiver can easily pick up the unintended electromagnetic noise from integrated circuits (ICs) populated within the same device. The radio range is limited by interference, called RF desensitization, which in turn often limits the usefulness of IoT devices. While the amount of EMI can be estimated using numeri- cal simulations tools like HFSS and CST, engineering issues such as where to place the IC or setting the radiation specification of the IC cannot be so easily addressed. In this chapter, an insightful and efficient RF desensitization model necessary to estimate EMI levels on RF antennas will be addressed. The approach will be focused on two represen- tative areas: noise radiation source modeling and coupling estimation associated with an embedded RF antenna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信