分区内存的编译器优化使用

L. Wehmeyer, Urs Helmig, P. Marwedel
{"title":"分区内存的编译器优化使用","authors":"L. Wehmeyer, Urs Helmig, P. Marwedel","doi":"10.1145/1054943.1054959","DOIUrl":null,"url":null,"abstract":"In order to meet the requirements concerning both performance and energy consumption in embedded systems, new memory architectures are being introduced. Beside the well-known use of caches in the memory hierarchy, processor cores today also include small onchip memories called scratchpad memories whose usage is not controlled by hardware, but rather by the programmer or the compiler. Techniques for utilization of these scratchpads have been known for some time. Some new processors provide more than one scratchpad, making it necessary to enhance the workflow such that this complex memory architecture can be efficiently utilized. In this work, we present an energy model and an ILP formulation to optimally assign memory objects to different partitions of scratchpad memories at compile time, achieving energy savings of up to 22% compared to previous approaches.","PeriodicalId":249099,"journal":{"name":"Workshop on Memory Performance Issues","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Compiler-optimized usage of partitioned memories\",\"authors\":\"L. Wehmeyer, Urs Helmig, P. Marwedel\",\"doi\":\"10.1145/1054943.1054959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the requirements concerning both performance and energy consumption in embedded systems, new memory architectures are being introduced. Beside the well-known use of caches in the memory hierarchy, processor cores today also include small onchip memories called scratchpad memories whose usage is not controlled by hardware, but rather by the programmer or the compiler. Techniques for utilization of these scratchpads have been known for some time. Some new processors provide more than one scratchpad, making it necessary to enhance the workflow such that this complex memory architecture can be efficiently utilized. In this work, we present an energy model and an ILP formulation to optimally assign memory objects to different partitions of scratchpad memories at compile time, achieving energy savings of up to 22% compared to previous approaches.\",\"PeriodicalId\":249099,\"journal\":{\"name\":\"Workshop on Memory Performance Issues\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory Performance Issues\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1054943.1054959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory Performance Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1054943.1054959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

为了满足嵌入式系统对性能和能耗的要求,新的内存架构正在被引入。除了众所周知的在内存层次结构中使用缓存之外,今天的处理器内核还包括称为刮板存储器的小型片上存储器,其使用不受硬件控制,而是由程序员或编译器控制。利用这些刮擦板的技术已经有一段时间了。一些新的处理器提供了多个刮记板,因此有必要增强工作流程,以便有效地利用这种复杂的内存架构。在这项工作中,我们提出了一个能量模型和一个ILP公式,以在编译时将内存对象最佳地分配到刮记板内存的不同分区,与以前的方法相比,实现了高达22%的能源节约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compiler-optimized usage of partitioned memories
In order to meet the requirements concerning both performance and energy consumption in embedded systems, new memory architectures are being introduced. Beside the well-known use of caches in the memory hierarchy, processor cores today also include small onchip memories called scratchpad memories whose usage is not controlled by hardware, but rather by the programmer or the compiler. Techniques for utilization of these scratchpads have been known for some time. Some new processors provide more than one scratchpad, making it necessary to enhance the workflow such that this complex memory architecture can be efficiently utilized. In this work, we present an energy model and an ILP formulation to optimally assign memory objects to different partitions of scratchpad memories at compile time, achieving energy savings of up to 22% compared to previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信