人类睡眠脑电图动态的多重分形分析

I.H. Song, Y. Ji, B. K. Cho, J. Ku, Y. Chee, J.S. Lee, M. Lee, I.Y. Kim, S.I. Kim
{"title":"人类睡眠脑电图动态的多重分形分析","authors":"I.H. Song, Y. Ji, B. K. Cho, J. Ku, Y. Chee, J.S. Lee, M. Lee, I.Y. Kim, S.I. Kim","doi":"10.1109/CNE.2007.369730","DOIUrl":null,"url":null,"abstract":"The aim of this study is to investigate the possibility that human sleep EEGs can be characterized by a multifractal spectrum using wavelet transform modulus maxima (WTMM). We used sleep EEGs taken from healthy subjects during the four stages of sleep and REM sleep. Our findings showed that the dynamics in human sleep EEGs could be adequately described by a set of scales and characterized by multifractals. We performed multivariate discriminate analysis to evaluate the use of multifractal features for classification. The multivariate discriminate analysis using within-groups covariance matrices for all sleep stages yielded a total error rate of 41.8%. In conclusion, multifractal formalism, based on the WTMM, appears to be a good tool for characterizing dynamics in sleep EEGs","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multifractal Analysis of Sleep EEG Dynamics in Humans\",\"authors\":\"I.H. Song, Y. Ji, B. K. Cho, J. Ku, Y. Chee, J.S. Lee, M. Lee, I.Y. Kim, S.I. Kim\",\"doi\":\"10.1109/CNE.2007.369730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to investigate the possibility that human sleep EEGs can be characterized by a multifractal spectrum using wavelet transform modulus maxima (WTMM). We used sleep EEGs taken from healthy subjects during the four stages of sleep and REM sleep. Our findings showed that the dynamics in human sleep EEGs could be adequately described by a set of scales and characterized by multifractals. We performed multivariate discriminate analysis to evaluate the use of multifractal features for classification. The multivariate discriminate analysis using within-groups covariance matrices for all sleep stages yielded a total error rate of 41.8%. In conclusion, multifractal formalism, based on the WTMM, appears to be a good tool for characterizing dynamics in sleep EEGs\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本研究的目的是探讨利用小波变换模极大值(WTMM)的多重分形谱来表征人类睡眠脑电图的可能性。我们使用了健康受试者在四个睡眠阶段和快速眼动睡眠阶段的睡眠脑电图。我们的研究结果表明,人类睡眠脑电图的动态可以用一套尺度和多重分形特征来充分描述。我们进行了多变量判别分析来评估多重分形特征在分类中的应用。使用组内协方差矩阵对所有睡眠阶段进行多变量判别分析,总错误率为41.8%。总之,基于WTMM的多重分形形式化似乎是表征睡眠脑电图动态的一个很好的工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal Analysis of Sleep EEG Dynamics in Humans
The aim of this study is to investigate the possibility that human sleep EEGs can be characterized by a multifractal spectrum using wavelet transform modulus maxima (WTMM). We used sleep EEGs taken from healthy subjects during the four stages of sleep and REM sleep. Our findings showed that the dynamics in human sleep EEGs could be adequately described by a set of scales and characterized by multifractals. We performed multivariate discriminate analysis to evaluate the use of multifractal features for classification. The multivariate discriminate analysis using within-groups covariance matrices for all sleep stages yielded a total error rate of 41.8%. In conclusion, multifractal formalism, based on the WTMM, appears to be a good tool for characterizing dynamics in sleep EEGs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信