膜冷却研究中主动湍流的产生

A. Bakhtiari, T. Sander, M. Straußwald, M. Pfitzner
{"title":"膜冷却研究中主动湍流的产生","authors":"A. Bakhtiari, T. Sander, M. Straußwald, M. Pfitzner","doi":"10.1115/GT2018-76451","DOIUrl":null,"url":null,"abstract":"In modern gas turbines, heat loads on thermal highly stressed components are reduced by film cooling, where a layer of cold gas is injected for the protection of these components. In order to optimize present cooling designs, experiments under realistic operating conditions have to be performed especially including the effect of turbulence intensity and turbulent length scale. In this work, an active turbulence grid was designed, built and tested in order to increase the turbulence conditions in a closed-loop, thermal wind tunnel facility for future film cooling investigations. The grid design, which is based on designs proposed in literature, and its implementation are described in detail. For the investigation of the resulting flow field without film cooling injection, the measurement techniques hotwire anemometry and high-speed PIV were used, which are described shortly. The measurements were carried out at different axial positions downstream of the turbulence grid, at different main flow velocities and various rotation rates of the grid. The results show that the turbulence intensity decays with increasing distance and stays constant at a distance of X/M = 14 downstream of the grid, which will be the position of film cooling flow injection in future investigations. For the investigated measurement points a decreasing rotation rate of the grid leads to an increase of the turbulence intensity. Increasing the main flow velocity significantly increases the turbulence intensity especially close to the grid. The calculated turbulent length scales for different axial positions downstream of the grid and three different main flow velocities stay within a narrow band between 10 mm and 30 mm, which is below the mesh size of the grid. Furthermore, the calculated data for different rotation rates and main flow velocities at X/M = 14 show a constant turbulent length scale of 20 mm for rotation rates higher than 1200 rpm, independently of the main flow velocity. However, for lower rotation rates a strong dependence of the turbulent length scale on rotation rate and on main flow velocity was seen. The results of both measurement techniques match very well, leading to the conclusion that the presented approach investigating turbulence intensity and turbulent length scale provides a reliable database for future investigations of film cooling configurations.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active Turbulence Generation for Film Cooling Investigations\",\"authors\":\"A. Bakhtiari, T. Sander, M. Straußwald, M. Pfitzner\",\"doi\":\"10.1115/GT2018-76451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern gas turbines, heat loads on thermal highly stressed components are reduced by film cooling, where a layer of cold gas is injected for the protection of these components. In order to optimize present cooling designs, experiments under realistic operating conditions have to be performed especially including the effect of turbulence intensity and turbulent length scale. In this work, an active turbulence grid was designed, built and tested in order to increase the turbulence conditions in a closed-loop, thermal wind tunnel facility for future film cooling investigations. The grid design, which is based on designs proposed in literature, and its implementation are described in detail. For the investigation of the resulting flow field without film cooling injection, the measurement techniques hotwire anemometry and high-speed PIV were used, which are described shortly. The measurements were carried out at different axial positions downstream of the turbulence grid, at different main flow velocities and various rotation rates of the grid. The results show that the turbulence intensity decays with increasing distance and stays constant at a distance of X/M = 14 downstream of the grid, which will be the position of film cooling flow injection in future investigations. For the investigated measurement points a decreasing rotation rate of the grid leads to an increase of the turbulence intensity. Increasing the main flow velocity significantly increases the turbulence intensity especially close to the grid. The calculated turbulent length scales for different axial positions downstream of the grid and three different main flow velocities stay within a narrow band between 10 mm and 30 mm, which is below the mesh size of the grid. Furthermore, the calculated data for different rotation rates and main flow velocities at X/M = 14 show a constant turbulent length scale of 20 mm for rotation rates higher than 1200 rpm, independently of the main flow velocity. However, for lower rotation rates a strong dependence of the turbulent length scale on rotation rate and on main flow velocity was seen. The results of both measurement techniques match very well, leading to the conclusion that the presented approach investigating turbulence intensity and turbulent length scale provides a reliable database for future investigations of film cooling configurations.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现代燃气轮机中,热高应力组件的热负荷通过薄膜冷却来减少,其中注入一层冷气体以保护这些组件。为了优化现有的冷却设计,必须在实际操作条件下进行实验,特别是包括湍流强度和湍流长度尺度的影响。在这项工作中,设计、建造和测试了一个主动湍流网格,以增加闭环热风洞设施中的湍流条件,用于未来的膜冷却研究。本文详细介绍了基于文献提出的网格设计方法的网格设计及其实现。为了研究无气膜冷却喷射产生的流场,使用了热线风速测量技术和高速PIV测量技术,并对其进行了简要介绍。测量在湍流网格下游的不同轴向位置、不同主流速度和不同网格旋转速率下进行。结果表明,湍流强度随距离的增加而衰减,并在网格下游X/M = 14处保持恒定,这将是今后研究中膜冷射流注入的位置。对于所研究的测点,网格旋转速度的减小会导致湍流强度的增加。增加主流速度会显著增加湍流强度,特别是在靠近栅格的地方。计算得到的网格下游不同轴向位置和三种不同主流速度下的湍流长度尺度都在10 ~ 30 mm的窄带范围内,低于网格的网格尺寸。此外,在X/M = 14时,不同转速和主流速度下的计算数据表明,转速高于1200 rpm时,湍流长度的恒定尺度为20 mm,与主流速度无关。然而,对于较低的旋转速率,湍流长度尺度强烈依赖于旋转速率和主流速度。这两种测量技术的结果非常吻合,由此得出结论,所提出的研究湍流强度和湍流长度尺度的方法为未来研究膜冷却结构提供了可靠的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Turbulence Generation for Film Cooling Investigations
In modern gas turbines, heat loads on thermal highly stressed components are reduced by film cooling, where a layer of cold gas is injected for the protection of these components. In order to optimize present cooling designs, experiments under realistic operating conditions have to be performed especially including the effect of turbulence intensity and turbulent length scale. In this work, an active turbulence grid was designed, built and tested in order to increase the turbulence conditions in a closed-loop, thermal wind tunnel facility for future film cooling investigations. The grid design, which is based on designs proposed in literature, and its implementation are described in detail. For the investigation of the resulting flow field without film cooling injection, the measurement techniques hotwire anemometry and high-speed PIV were used, which are described shortly. The measurements were carried out at different axial positions downstream of the turbulence grid, at different main flow velocities and various rotation rates of the grid. The results show that the turbulence intensity decays with increasing distance and stays constant at a distance of X/M = 14 downstream of the grid, which will be the position of film cooling flow injection in future investigations. For the investigated measurement points a decreasing rotation rate of the grid leads to an increase of the turbulence intensity. Increasing the main flow velocity significantly increases the turbulence intensity especially close to the grid. The calculated turbulent length scales for different axial positions downstream of the grid and three different main flow velocities stay within a narrow band between 10 mm and 30 mm, which is below the mesh size of the grid. Furthermore, the calculated data for different rotation rates and main flow velocities at X/M = 14 show a constant turbulent length scale of 20 mm for rotation rates higher than 1200 rpm, independently of the main flow velocity. However, for lower rotation rates a strong dependence of the turbulent length scale on rotation rate and on main flow velocity was seen. The results of both measurement techniques match very well, leading to the conclusion that the presented approach investigating turbulence intensity and turbulent length scale provides a reliable database for future investigations of film cooling configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信