{"title":"媒体合法性检测:使用监督机器学习和自然语言处理定位谎言和偏见的数据科学方法","authors":"N. Ji, Yu Sun","doi":"10.5121/csit.2022.121003","DOIUrl":null,"url":null,"abstract":"Media sources, primarily of the political variation, have a hastening grip on narratives that can easily be constructed using biased views and false information. Unfortunately, many people in modern society are unable to differentiate these false narratives from real events. Utilizing natural language processing, sentiment analysis, and various other computer science techniques, models can be generated to help users immediately detect bias and falsehoods in political media. The models created in this experiment were able to detect up to 70% accuracy on political bias and 73% accuracy on falsehoods by utilizing datasets from a variety of collections of both political media and other mediums of information. Overall, the models were successful as the standard for most natural language processing models achieved only about 75% accuracy.","PeriodicalId":402252,"journal":{"name":"Artificial Intelligence Trends","volume":"36 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Media Legitimacy Detection: A Data Science Approach to Locate Falsehoods and Bias using Supervised Machine Learning and Natural-Language Processing\",\"authors\":\"N. Ji, Yu Sun\",\"doi\":\"10.5121/csit.2022.121003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Media sources, primarily of the political variation, have a hastening grip on narratives that can easily be constructed using biased views and false information. Unfortunately, many people in modern society are unable to differentiate these false narratives from real events. Utilizing natural language processing, sentiment analysis, and various other computer science techniques, models can be generated to help users immediately detect bias and falsehoods in political media. The models created in this experiment were able to detect up to 70% accuracy on political bias and 73% accuracy on falsehoods by utilizing datasets from a variety of collections of both political media and other mediums of information. Overall, the models were successful as the standard for most natural language processing models achieved only about 75% accuracy.\",\"PeriodicalId\":402252,\"journal\":{\"name\":\"Artificial Intelligence Trends\",\"volume\":\"36 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Media Legitimacy Detection: A Data Science Approach to Locate Falsehoods and Bias using Supervised Machine Learning and Natural-Language Processing
Media sources, primarily of the political variation, have a hastening grip on narratives that can easily be constructed using biased views and false information. Unfortunately, many people in modern society are unable to differentiate these false narratives from real events. Utilizing natural language processing, sentiment analysis, and various other computer science techniques, models can be generated to help users immediately detect bias and falsehoods in political media. The models created in this experiment were able to detect up to 70% accuracy on political bias and 73% accuracy on falsehoods by utilizing datasets from a variety of collections of both political media and other mediums of information. Overall, the models were successful as the standard for most natural language processing models achieved only about 75% accuracy.