离散多尺度向量场分解

Y. Tong, S. Lombeyda, A. N. Hirani, M. Desbrun
{"title":"离散多尺度向量场分解","authors":"Y. Tong, S. Lombeyda, A. N. Hirani, M. Desbrun","doi":"10.1145/1201775.882290","DOIUrl":null,"url":null,"abstract":"While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finite-difference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergence-free part, a curl-free part, and a harmonic part. We show how our discrete approach matches its well-known smooth analog, called the Helmotz-Hodge decomposition, and that the resulting computational tools have very intuitive geometric interpretation. We demonstrate the versatility of these tools in a series of applications, ranging from data visualization to fluid and deformable object simulation.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"274","resultStr":"{\"title\":\"Discrete multiscale vector field decomposition\",\"authors\":\"Y. Tong, S. Lombeyda, A. N. Hirani, M. Desbrun\",\"doi\":\"10.1145/1201775.882290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finite-difference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergence-free part, a curl-free part, and a harmonic part. We show how our discrete approach matches its well-known smooth analog, called the Helmotz-Hodge decomposition, and that the resulting computational tools have very intuitive geometric interpretation. We demonstrate the versatility of these tools in a series of applications, ranging from data visualization to fluid and deformable object simulation.\",\"PeriodicalId\":314969,\"journal\":{\"name\":\"ACM SIGGRAPH 2003 Papers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"274\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2003 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1201775.882290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 274

摘要

虽然2D和3D矢量场在计算科学中无处不在,但它们在图形中的使用通常仅限于规则网格,其中计算很容易通过有限差分方法处理。在本文中,我们提出了一套简单而精确的工具来分析任意四面体网格上的三维离散向量场。我们将矢量场的变分多尺度分解为三个直观的分量:无散度部分、无旋度部分和谐波部分。我们展示了我们的离散方法如何匹配其著名的光滑模拟,称为Helmotz-Hodge分解,并且由此产生的计算工具具有非常直观的几何解释。我们展示了这些工具在一系列应用中的多功能性,从数据可视化到流体和可变形对象模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete multiscale vector field decomposition
While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finite-difference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergence-free part, a curl-free part, and a harmonic part. We show how our discrete approach matches its well-known smooth analog, called the Helmotz-Hodge decomposition, and that the resulting computational tools have very intuitive geometric interpretation. We demonstrate the versatility of these tools in a series of applications, ranging from data visualization to fluid and deformable object simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信