在垂直运动表面上行走的混合-线性倒立摆非周期轨迹的渐近镇定

Amir Iqbal, Sushant Veer, Yan Gu
{"title":"在垂直运动表面上行走的混合-线性倒立摆非周期轨迹的渐近镇定","authors":"Amir Iqbal, Sushant Veer, Yan Gu","doi":"10.23919/ACC55779.2023.10156645","DOIUrl":null,"url":null,"abstract":"This paper presents the analysis and stabilization of a hybrid-linear inverted pendulum (H-LIP) model that describes the essential robot dynamics associated with legged locomotion on a dynamic rigid surface (DRS) with a general vertical motion. The H-LIP model is analytically derived by explicitly capturing the discrete-time foot placement and the continuous-phase dynamics associated with DRS locomotion, and by considering aperiodic DRS motions and variable H-LIP continuous-phase durations. The closed-loop tracking error dynamics of the H-LIP model is then established under a discrete-time feedback footstep control law. The stability of the closed-loop H-LIP error dynamics is analyzed to construct sufficient conditions on the control gains for ensuring the asymptotic error convergence. Simulation results of the proposed H-LIP walking on a vertically moving DRS confirm the proposed control law stabilizes the H-LIP model under various vertical, aperiodic DRS motion profiles and variable H-LIP step durations.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Stabilization of Aperiodic Trajectories of a Hybrid-Linear Inverted Pendulum Walking on a Vertically Moving Surface\",\"authors\":\"Amir Iqbal, Sushant Veer, Yan Gu\",\"doi\":\"10.23919/ACC55779.2023.10156645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the analysis and stabilization of a hybrid-linear inverted pendulum (H-LIP) model that describes the essential robot dynamics associated with legged locomotion on a dynamic rigid surface (DRS) with a general vertical motion. The H-LIP model is analytically derived by explicitly capturing the discrete-time foot placement and the continuous-phase dynamics associated with DRS locomotion, and by considering aperiodic DRS motions and variable H-LIP continuous-phase durations. The closed-loop tracking error dynamics of the H-LIP model is then established under a discrete-time feedback footstep control law. The stability of the closed-loop H-LIP error dynamics is analyzed to construct sufficient conditions on the control gains for ensuring the asymptotic error convergence. Simulation results of the proposed H-LIP walking on a vertically moving DRS confirm the proposed control law stabilizes the H-LIP model under various vertical, aperiodic DRS motion profiles and variable H-LIP step durations.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10156645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析和稳定了一个混合线性倒立摆(H-LIP)模型,该模型描述了机器人在具有一般垂直运动的动态刚性表面(DRS)上的足部运动的基本动力学。通过明确捕获离散时间足部放置和与DRS运动相关的连续相位动力学,并考虑非周期DRS运动和可变H-LIP连续相位持续时间,解析推导出H-LIP模型。建立了H-LIP模型在离散时间反馈阶跃控制律下的闭环跟踪误差动力学。分析了闭环H-LIP误差动力学的稳定性,构造了保证误差渐近收敛的控制增益的充分条件。对H-LIP在垂直运动DRS上行走的仿真结果验证了所提出的控制律在不同垂直、非周期DRS运动曲线和不同H-LIP步长下都能稳定H-LIP模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stabilization of Aperiodic Trajectories of a Hybrid-Linear Inverted Pendulum Walking on a Vertically Moving Surface
This paper presents the analysis and stabilization of a hybrid-linear inverted pendulum (H-LIP) model that describes the essential robot dynamics associated with legged locomotion on a dynamic rigid surface (DRS) with a general vertical motion. The H-LIP model is analytically derived by explicitly capturing the discrete-time foot placement and the continuous-phase dynamics associated with DRS locomotion, and by considering aperiodic DRS motions and variable H-LIP continuous-phase durations. The closed-loop tracking error dynamics of the H-LIP model is then established under a discrete-time feedback footstep control law. The stability of the closed-loop H-LIP error dynamics is analyzed to construct sufficient conditions on the control gains for ensuring the asymptotic error convergence. Simulation results of the proposed H-LIP walking on a vertically moving DRS confirm the proposed control law stabilizes the H-LIP model under various vertical, aperiodic DRS motion profiles and variable H-LIP step durations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信