{"title":"未来服务器存储系统的光互连机会","authors":"Y. Katayama, A. Okazaki","doi":"10.1109/HPCA.2007.346184","DOIUrl":null,"url":null,"abstract":"This paper deals with alternative server memory architecture options in multicore CPU generations using optically-attached memory systems. Thanks to its large bandwidth-distance product, optical interconnect technology enables CPUs and local memory to be placed meters away from each other without sacrificing bandwidth. This topologically-local but physically-remote main memory attached via an ultra-high-bandwidth parallel optical interconnect can lead to flexible memory architecture options using low-cost commodity memory technologies","PeriodicalId":177324,"journal":{"name":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Optical Interconnect Opportunities for Future Server Memory Systems\",\"authors\":\"Y. Katayama, A. Okazaki\",\"doi\":\"10.1109/HPCA.2007.346184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with alternative server memory architecture options in multicore CPU generations using optically-attached memory systems. Thanks to its large bandwidth-distance product, optical interconnect technology enables CPUs and local memory to be placed meters away from each other without sacrificing bandwidth. This topologically-local but physically-remote main memory attached via an ultra-high-bandwidth parallel optical interconnect can lead to flexible memory architecture options using low-cost commodity memory technologies\",\"PeriodicalId\":177324,\"journal\":{\"name\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 13th International Symposium on High Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2007.346184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2007.346184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical Interconnect Opportunities for Future Server Memory Systems
This paper deals with alternative server memory architecture options in multicore CPU generations using optically-attached memory systems. Thanks to its large bandwidth-distance product, optical interconnect technology enables CPUs and local memory to be placed meters away from each other without sacrificing bandwidth. This topologically-local but physically-remote main memory attached via an ultra-high-bandwidth parallel optical interconnect can lead to flexible memory architecture options using low-cost commodity memory technologies