电力系统动态特征在线识别分类方法评价

Tingyan Guo, Jiachen He, Zhen Li, J. Milanović
{"title":"电力系统动态特征在线识别分类方法评价","authors":"Tingyan Guo, Jiachen He, Zhen Li, J. Milanović","doi":"10.1109/PSCC.2014.7038430","DOIUrl":null,"url":null,"abstract":"The paper investigates the use of Decision Tree (DT), Ensemble DT and multiclass Support Vector Machine (SVM) for on-line prediction of post-fault system dynamic signature based on Phasor Measurement Unit (PMU) measurements. The performance of these multiclass classification techniques is compared in terms of i) how fast the prediction about generator grouping can be made after the clearance of transient disturbance and ii) the accuracy of prediction. The application of these methods is illustrated on a 16-machine, 68-bus test system. Results indicate that the Ensemble DT method performs the best by achieving accuracy of close to 90% using 10 cycles data of post-disturbance generator rotor angles as predictors and over 90% using 30 cycles data of rotor angles as predictors.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of classification methods for on-line identification of power system dynamic signature\",\"authors\":\"Tingyan Guo, Jiachen He, Zhen Li, J. Milanović\",\"doi\":\"10.1109/PSCC.2014.7038430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the use of Decision Tree (DT), Ensemble DT and multiclass Support Vector Machine (SVM) for on-line prediction of post-fault system dynamic signature based on Phasor Measurement Unit (PMU) measurements. The performance of these multiclass classification techniques is compared in terms of i) how fast the prediction about generator grouping can be made after the clearance of transient disturbance and ii) the accuracy of prediction. The application of these methods is illustrated on a 16-machine, 68-bus test system. Results indicate that the Ensemble DT method performs the best by achieving accuracy of close to 90% using 10 cycles data of post-disturbance generator rotor angles as predictors and over 90% using 30 cycles data of rotor angles as predictors.\",\"PeriodicalId\":155801,\"journal\":{\"name\":\"2014 Power Systems Computation Conference\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Power Systems Computation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PSCC.2014.7038430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了基于相量测量单元(PMU)测量的决策树(DT)、集成DT (Ensemble DT)和多类支持向量机(SVM)在线预测故障后系统动态特征的方法。从消除暂态扰动后对发电机分组的预测速度和预测精度两方面比较了这些多类分类技术的性能。并举例说明了这些方法在一个16机68总线测试系统上的应用。结果表明,集成DT方法使用扰动后发电机转子角度的10个周期数据预测精度接近90%,使用扰动后发电机转子角度的30个周期数据预测精度超过90%,效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of classification methods for on-line identification of power system dynamic signature
The paper investigates the use of Decision Tree (DT), Ensemble DT and multiclass Support Vector Machine (SVM) for on-line prediction of post-fault system dynamic signature based on Phasor Measurement Unit (PMU) measurements. The performance of these multiclass classification techniques is compared in terms of i) how fast the prediction about generator grouping can be made after the clearance of transient disturbance and ii) the accuracy of prediction. The application of these methods is illustrated on a 16-machine, 68-bus test system. Results indicate that the Ensemble DT method performs the best by achieving accuracy of close to 90% using 10 cycles data of post-disturbance generator rotor angles as predictors and over 90% using 30 cycles data of rotor angles as predictors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信