海报:基于学习模拟器的数字网络双胞胎

Yuru Zhang, Yongjie Xue, Qiang Liu, Nakjung Choi
{"title":"海报:基于学习模拟器的数字网络双胞胎","authors":"Yuru Zhang, Yongjie Xue, Qiang Liu, Nakjung Choi","doi":"10.1109/INFOCOMWKSHPS57453.2023.10226169","DOIUrl":null,"url":null,"abstract":"Digital network twin (DNT) allows network operators to test their network management policy before their actual deployment in real-world networks. Achieving DNT, however, can be challenging and compute-intensive if every detail needs to be replicated exactly. In this work, we propose a new compute-efficient approach to realize DNT by augmenting existing network simulators. First, we build a real-world testbed by using OpenAirInterface and replicate its settings with the NS-3 simulator. Second, we observe the non-trivial distributional discrepancy between the simulator and the real-world testbed. Third, we use deep learning techniques to bridge the sim-to-real discrepancy under different network states. The experimental results show our method can reduce up to 91% sim-to-real discrepancy.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: Digital Network Twin via Learning-Based Simulator\",\"authors\":\"Yuru Zhang, Yongjie Xue, Qiang Liu, Nakjung Choi\",\"doi\":\"10.1109/INFOCOMWKSHPS57453.2023.10226169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital network twin (DNT) allows network operators to test their network management policy before their actual deployment in real-world networks. Achieving DNT, however, can be challenging and compute-intensive if every detail needs to be replicated exactly. In this work, we propose a new compute-efficient approach to realize DNT by augmenting existing network simulators. First, we build a real-world testbed by using OpenAirInterface and replicate its settings with the NS-3 simulator. Second, we observe the non-trivial distributional discrepancy between the simulator and the real-world testbed. Third, we use deep learning techniques to bridge the sim-to-real discrepancy under different network states. The experimental results show our method can reduce up to 91% sim-to-real discrepancy.\",\"PeriodicalId\":354290,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字网络孪生(DNT)允许网络运营商在实际网络部署之前测试其网络管理策略。但是,如果需要精确地复制每个细节,则实现DNT可能具有挑战性并且需要大量计算。在这项工作中,我们提出了一种新的计算效率的方法,通过增加现有的网络模拟器来实现DNT。首先,我们使用OpenAirInterface构建了一个真实世界的测试平台,并使用NS-3模拟器复制其设置。其次,我们观察到模拟器与真实测试平台之间的非平凡分布差异。第三,我们使用深度学习技术来弥合不同网络状态下的模拟与真实差异。实验结果表明,该方法可以减少高达91%的模拟与真实差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Digital Network Twin via Learning-Based Simulator
Digital network twin (DNT) allows network operators to test their network management policy before their actual deployment in real-world networks. Achieving DNT, however, can be challenging and compute-intensive if every detail needs to be replicated exactly. In this work, we propose a new compute-efficient approach to realize DNT by augmenting existing network simulators. First, we build a real-world testbed by using OpenAirInterface and replicate its settings with the NS-3 simulator. Second, we observe the non-trivial distributional discrepancy between the simulator and the real-world testbed. Third, we use deep learning techniques to bridge the sim-to-real discrepancy under different network states. The experimental results show our method can reduce up to 91% sim-to-real discrepancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信