{"title":"整数多精度算法协处理器在Zynq Ultrascale+ MPSoC上的实现","authors":"T. Stefański, K. Rudnicki, Wojciech Zebrowski","doi":"10.23919/MIXDES52406.2021.9497554","DOIUrl":null,"url":null,"abstract":"Recently, we have opened the source code of coprocessor for multiple-precision arithmetic (MPA). In this contribution, the implementation and benchmarking results for this MPA coprocessor are presented on modern Zynq Ultrascale+ multiprocessor system on chip, which combines field-programmable gate array with quad-core ARM Cortex-A53 64-bit central processing unit (CPU). In our benchmark, a single coprocessor can be up to 4.5 times faster than a single CPU core within the same chip emulating MPA using a software library.","PeriodicalId":375541,"journal":{"name":"2021 28th International Conference on Mixed Design of Integrated Circuits and System","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Coprocessor for Integer Multiple Precision Arithmetic on Zynq Ultrascale+ MPSoC\",\"authors\":\"T. Stefański, K. Rudnicki, Wojciech Zebrowski\",\"doi\":\"10.23919/MIXDES52406.2021.9497554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we have opened the source code of coprocessor for multiple-precision arithmetic (MPA). In this contribution, the implementation and benchmarking results for this MPA coprocessor are presented on modern Zynq Ultrascale+ multiprocessor system on chip, which combines field-programmable gate array with quad-core ARM Cortex-A53 64-bit central processing unit (CPU). In our benchmark, a single coprocessor can be up to 4.5 times faster than a single CPU core within the same chip emulating MPA using a software library.\",\"PeriodicalId\":375541,\"journal\":{\"name\":\"2021 28th International Conference on Mixed Design of Integrated Circuits and System\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th International Conference on Mixed Design of Integrated Circuits and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIXDES52406.2021.9497554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th International Conference on Mixed Design of Integrated Circuits and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES52406.2021.9497554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Coprocessor for Integer Multiple Precision Arithmetic on Zynq Ultrascale+ MPSoC
Recently, we have opened the source code of coprocessor for multiple-precision arithmetic (MPA). In this contribution, the implementation and benchmarking results for this MPA coprocessor are presented on modern Zynq Ultrascale+ multiprocessor system on chip, which combines field-programmable gate array with quad-core ARM Cortex-A53 64-bit central processing unit (CPU). In our benchmark, a single coprocessor can be up to 4.5 times faster than a single CPU core within the same chip emulating MPA using a software library.