识别智能健康应用中累积滞后效应的正则化方法

Karthik Srinivasan, Faiz Currim, S. Ram, M. Mehl, Casey Lindberg, Esther Sternberg, Perry Skeath, Davida Herzl, Reuben Herzl, M. Lunden, Nicole Goebel, Scott Andrews, B. Najafi, J. Razjouyan, Hyo-Ki Lee, Brian Gilligan, J. Heerwagen, Kevin Kampschroer, Kelli Canada
{"title":"识别智能健康应用中累积滞后效应的正则化方法","authors":"Karthik Srinivasan, Faiz Currim, S. Ram, M. Mehl, Casey Lindberg, Esther Sternberg, Perry Skeath, Davida Herzl, Reuben Herzl, M. Lunden, Nicole Goebel, Scott Andrews, B. Najafi, J. Razjouyan, Hyo-Ki Lee, Brian Gilligan, J. Heerwagen, Kevin Kampschroer, Kelli Canada","doi":"10.1145/3079452.3079503","DOIUrl":null,"url":null,"abstract":"Recent development of wearable sensor technologies have made it possible to capture concurrent data streams for ambient environment and instantaneous physiological stress response at a fine granularity. Characterizing the delay in physiological stress response time to each environment stimulus is as important as capturing the magnitude of the effect. In this paper, we discuss and evaluate a new regularization-based statistical method to determine the ideal lagged effect of five environmental factors-carbon dioxide, temperature, relative humidity, atmospheric pressure and noise levels on instantaneous stress response. Using this method, we infer that the first four environment variables have a cumulative lagged effect, of approximately 60 minutes, on stress response whereas noise level has an instantaneous effect on stress response. The proposed transformations to inputs result in models with better fit and predictive performance. This study not only informs the field of environment-wellbeing research about the cumulative lagged effects of the specified environmental factors, but also proposes a new method for determining optimal feature transformation in similar smart health studies.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications\",\"authors\":\"Karthik Srinivasan, Faiz Currim, S. Ram, M. Mehl, Casey Lindberg, Esther Sternberg, Perry Skeath, Davida Herzl, Reuben Herzl, M. Lunden, Nicole Goebel, Scott Andrews, B. Najafi, J. Razjouyan, Hyo-Ki Lee, Brian Gilligan, J. Heerwagen, Kevin Kampschroer, Kelli Canada\",\"doi\":\"10.1145/3079452.3079503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent development of wearable sensor technologies have made it possible to capture concurrent data streams for ambient environment and instantaneous physiological stress response at a fine granularity. Characterizing the delay in physiological stress response time to each environment stimulus is as important as capturing the magnitude of the effect. In this paper, we discuss and evaluate a new regularization-based statistical method to determine the ideal lagged effect of five environmental factors-carbon dioxide, temperature, relative humidity, atmospheric pressure and noise levels on instantaneous stress response. Using this method, we infer that the first four environment variables have a cumulative lagged effect, of approximately 60 minutes, on stress response whereas noise level has an instantaneous effect on stress response. The proposed transformations to inputs result in models with better fit and predictive performance. This study not only informs the field of environment-wellbeing research about the cumulative lagged effects of the specified environmental factors, but also proposes a new method for determining optimal feature transformation in similar smart health studies.\",\"PeriodicalId\":245682,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Digital Health\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079452.3079503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,可穿戴传感器技术的发展使得以精细粒度捕获环境环境和瞬时生理应激反应的并发数据流成为可能。表征生理应激反应时间对每个环境刺激的延迟与捕获效应的大小同样重要。在本文中,我们讨论并评估了一种新的基于正则化的统计方法,以确定五种环境因素-二氧化碳,温度,相对湿度,大气压力和噪声水平对瞬时应力响应的理想滞后效应。使用这种方法,我们推断前四个环境变量对应力响应有一个累积滞后效应,大约60分钟,而噪声水平对应力响应有一个瞬时的影响。所提出的输入转换导致模型具有更好的拟合和预测性能。该研究不仅为环境健康研究领域提供了特定环境因素的累积滞后效应,而且为同类智能健康研究中确定最优特征转换提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications
Recent development of wearable sensor technologies have made it possible to capture concurrent data streams for ambient environment and instantaneous physiological stress response at a fine granularity. Characterizing the delay in physiological stress response time to each environment stimulus is as important as capturing the magnitude of the effect. In this paper, we discuss and evaluate a new regularization-based statistical method to determine the ideal lagged effect of five environmental factors-carbon dioxide, temperature, relative humidity, atmospheric pressure and noise levels on instantaneous stress response. Using this method, we infer that the first four environment variables have a cumulative lagged effect, of approximately 60 minutes, on stress response whereas noise level has an instantaneous effect on stress response. The proposed transformations to inputs result in models with better fit and predictive performance. This study not only informs the field of environment-wellbeing research about the cumulative lagged effects of the specified environmental factors, but also proposes a new method for determining optimal feature transformation in similar smart health studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信