多模态视频问答的文本引导对象检测器

Ruoyue Shen, Nakamasa Inoue, K. Shinoda
{"title":"多模态视频问答的文本引导对象检测器","authors":"Ruoyue Shen, Nakamasa Inoue, K. Shinoda","doi":"10.1109/WACV56688.2023.00109","DOIUrl":null,"url":null,"abstract":"Video Question Answering (Video QA) is a task to answer a text-format question based on the understanding of linguistic semantics, visual information, and also linguistic-visual alignment in the video. In Video QA, an object detector pre-trained with large-scale datasets, such as Faster R-CNN, has been widely used to extract visual representations from video frames. However, it is not always able to precisely detect the objects needed to answer the question be-cause of the domain gaps between the datasets for training the object detector and those for Video QA. In this paper, we propose a text-guided object detector (TGOD), which takes text question-answer pairs and video frames as inputs, detects the objects relevant to the given text, and thus provides intuitive visualization and interpretable results. Our experiments using the STAGE framework on the TVQA+ dataset show the effectiveness of our proposed detector. It achieves a 2.02 points improvement in accuracy of QA, 12.13 points improvement in object detection (mAP50), 1.1 points improvement in temporal location, and 2.52 points improvement in ASA over the STAGE original detector.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text-Guided Object Detector for Multi-modal Video Question Answering\",\"authors\":\"Ruoyue Shen, Nakamasa Inoue, K. Shinoda\",\"doi\":\"10.1109/WACV56688.2023.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video Question Answering (Video QA) is a task to answer a text-format question based on the understanding of linguistic semantics, visual information, and also linguistic-visual alignment in the video. In Video QA, an object detector pre-trained with large-scale datasets, such as Faster R-CNN, has been widely used to extract visual representations from video frames. However, it is not always able to precisely detect the objects needed to answer the question be-cause of the domain gaps between the datasets for training the object detector and those for Video QA. In this paper, we propose a text-guided object detector (TGOD), which takes text question-answer pairs and video frames as inputs, detects the objects relevant to the given text, and thus provides intuitive visualization and interpretable results. Our experiments using the STAGE framework on the TVQA+ dataset show the effectiveness of our proposed detector. It achieves a 2.02 points improvement in accuracy of QA, 12.13 points improvement in object detection (mAP50), 1.1 points improvement in temporal location, and 2.52 points improvement in ASA over the STAGE original detector.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频问答(Video Question answer,简称Video QA)是一项基于对语言语义、视觉信息以及视频中语言-视觉对齐的理解来回答文本格式问题的任务。在视频QA中,使用大规模数据集(如Faster R-CNN)预训练的对象检测器已被广泛用于从视频帧中提取视觉表示。然而,它并不总是能够精确地检测到回答问题所需的对象,因为用于训练对象检测器的数据集和用于视频QA的数据集之间存在领域差距。本文提出了一种文本引导对象检测器(TGOD),它以文本问答对和视频帧作为输入,检测与给定文本相关的对象,从而提供直观的可视化和可解释的结果。我们在TVQA+数据集上使用STAGE框架进行的实验表明了我们提出的检测器的有效性。与STAGE原始探测器相比,QA精度提高了2.02分,目标检测(mAP50)精度提高了12.13分,时间定位精度提高了1.1分,ASA精度提高了2.52分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-Guided Object Detector for Multi-modal Video Question Answering
Video Question Answering (Video QA) is a task to answer a text-format question based on the understanding of linguistic semantics, visual information, and also linguistic-visual alignment in the video. In Video QA, an object detector pre-trained with large-scale datasets, such as Faster R-CNN, has been widely used to extract visual representations from video frames. However, it is not always able to precisely detect the objects needed to answer the question be-cause of the domain gaps between the datasets for training the object detector and those for Video QA. In this paper, we propose a text-guided object detector (TGOD), which takes text question-answer pairs and video frames as inputs, detects the objects relevant to the given text, and thus provides intuitive visualization and interpretable results. Our experiments using the STAGE framework on the TVQA+ dataset show the effectiveness of our proposed detector. It achieves a 2.02 points improvement in accuracy of QA, 12.13 points improvement in object detection (mAP50), 1.1 points improvement in temporal location, and 2.52 points improvement in ASA over the STAGE original detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信