基于乘数误差模型的波动率度量模型实证研究

Yuling Ma, Pin Guo, Yuan Zhao
{"title":"基于乘数误差模型的波动率度量模型实证研究","authors":"Yuling Ma, Pin Guo, Yuan Zhao","doi":"10.1109/CSO.2014.156","DOIUrl":null,"url":null,"abstract":"Volatility is a very important factor of measuring financial risk. This paper introduces the volatility measurement method of high frequency financial time series involving the nonnegative-Multiplicative Error Model. This paper takes the high frequency data of HS300 index of Chinese stock market as the research object, building the TARCH model according to leverage, and uses the \"realized volatility\" to build ARFIMA model, multiplicative error model respectively, then carries on the comparative analysis on accuracy after using the three models to predict with the mean square error method. The analysis results show that the multiplicative error model gives the best prediction effects, and ARFIMA model is the second.","PeriodicalId":174800,"journal":{"name":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model\",\"authors\":\"Yuling Ma, Pin Guo, Yuan Zhao\",\"doi\":\"10.1109/CSO.2014.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volatility is a very important factor of measuring financial risk. This paper introduces the volatility measurement method of high frequency financial time series involving the nonnegative-Multiplicative Error Model. This paper takes the high frequency data of HS300 index of Chinese stock market as the research object, building the TARCH model according to leverage, and uses the \\\"realized volatility\\\" to build ARFIMA model, multiplicative error model respectively, then carries on the comparative analysis on accuracy after using the three models to predict with the mean square error method. The analysis results show that the multiplicative error model gives the best prediction effects, and ARFIMA model is the second.\",\"PeriodicalId\":174800,\"journal\":{\"name\":\"2014 Seventh International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2014.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2014.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波动性是衡量金融风险的一个重要因素。本文介绍了一种基于非负乘误差模型的高频金融时间序列波动率测量方法。本文以中国股市HS300指数的高频数据为研究对象,根据杠杆作用构建TARCH模型,并利用“已实现波动率”分别构建ARFIMA模型、乘法误差模型,然后用均方误差法对三种模型进行预测后的精度进行对比分析。分析结果表明,乘法误差模型的预测效果最好,ARFIMA模型次之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model
Volatility is a very important factor of measuring financial risk. This paper introduces the volatility measurement method of high frequency financial time series involving the nonnegative-Multiplicative Error Model. This paper takes the high frequency data of HS300 index of Chinese stock market as the research object, building the TARCH model according to leverage, and uses the "realized volatility" to build ARFIMA model, multiplicative error model respectively, then carries on the comparative analysis on accuracy after using the three models to predict with the mean square error method. The analysis results show that the multiplicative error model gives the best prediction effects, and ARFIMA model is the second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信