{"title":"利用BiCMOS技术模拟实现径向基神经网络(RBNN)","authors":"J.P. de Oliveira, N. Oki","doi":"10.1109/MWSCAS.2001.986285","DOIUrl":null,"url":null,"abstract":"This paper describes an analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a Gaussian function obtained through the characteristic of the bipolar differential pair. The Gaussian parameters (gain, center and width) are changed with a programmable current source. Results obtained with PSPICE software are shown.","PeriodicalId":403026,"journal":{"name":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An analog implementation of radial basis neural networks (RBNN) using BiCMOS technology\",\"authors\":\"J.P. de Oliveira, N. Oki\",\"doi\":\"10.1109/MWSCAS.2001.986285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a Gaussian function obtained through the characteristic of the bipolar differential pair. The Gaussian parameters (gain, center and width) are changed with a programmable current source. Results obtained with PSPICE software are shown.\",\"PeriodicalId\":403026,\"journal\":{\"name\":\"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2001.986285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2001.986285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analog implementation of radial basis neural networks (RBNN) using BiCMOS technology
This paper describes an analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a Gaussian function obtained through the characteristic of the bipolar differential pair. The Gaussian parameters (gain, center and width) are changed with a programmable current source. Results obtained with PSPICE software are shown.