用归纳逻辑编程进行离群值检测

F. Angiulli, Fabio Fassetti
{"title":"用归纳逻辑编程进行离群值检测","authors":"F. Angiulli, Fabio Fassetti","doi":"10.1109/ICDM.2009.127","DOIUrl":null,"url":null,"abstract":"We present a novel definition of outlier in the context of inductive logic programming. Given a set of positive and negative examples, the definition aims at singling out the examples showing anomalous behavior. We note that the task here pursued is different from noise removal, and, in fact, the anomalous observations we discover are different in nature from noisy ones. We discuss pecularities of the novel approach, present an algorithm for detecting outliers, discuss some examples of knowledge mined, and compare it with alternative approaches.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Outlier Detection Using Inductive Logic Programming\",\"authors\":\"F. Angiulli, Fabio Fassetti\",\"doi\":\"10.1109/ICDM.2009.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel definition of outlier in the context of inductive logic programming. Given a set of positive and negative examples, the definition aims at singling out the examples showing anomalous behavior. We note that the task here pursued is different from noise removal, and, in fact, the anomalous observations we discover are different in nature from noisy ones. We discuss pecularities of the novel approach, present an algorithm for detecting outliers, discuss some examples of knowledge mined, and compare it with alternative approaches.\",\"PeriodicalId\":247645,\"journal\":{\"name\":\"2009 Ninth IEEE International Conference on Data Mining\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在归纳逻辑规划的背景下,提出了离群值的新定义。给定一组积极和消极的例子,该定义旨在挑出表现出异常行为的例子。我们注意到,这里所追求的任务不同于噪声去除,事实上,我们发现的异常观测在性质上不同于噪声观测。我们讨论了新方法的特点,提出了一种检测异常值的算法,讨论了一些知识挖掘的例子,并将其与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier Detection Using Inductive Logic Programming
We present a novel definition of outlier in the context of inductive logic programming. Given a set of positive and negative examples, the definition aims at singling out the examples showing anomalous behavior. We note that the task here pursued is different from noise removal, and, in fact, the anomalous observations we discover are different in nature from noisy ones. We discuss pecularities of the novel approach, present an algorithm for detecting outliers, discuss some examples of knowledge mined, and compare it with alternative approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信