作为表面边界条件的严格时域石墨烯表示

S. Amanatiadis, N. Kantartzis
{"title":"作为表面边界条件的严格时域石墨烯表示","authors":"S. Amanatiadis, N. Kantartzis","doi":"10.1109/METAMATERIALS.2014.6948626","DOIUrl":null,"url":null,"abstract":"The present work introduces the explicit modelling of graphene in the time domain, defined by its surface conductivity, as a surface boundary condition via an efficient 2D transverse electric FDTD formulation, derived directly from Maxwell's equations. The analysis is conducted at the far-infrared regime and the proposed method is validated by comparing its results with the theoretical propagation properties of the surface waves, supported onto graphene.","PeriodicalId":151955,"journal":{"name":"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rigorous time-domain graphene representation as a surface boundary condition\",\"authors\":\"S. Amanatiadis, N. Kantartzis\",\"doi\":\"10.1109/METAMATERIALS.2014.6948626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work introduces the explicit modelling of graphene in the time domain, defined by its surface conductivity, as a surface boundary condition via an efficient 2D transverse electric FDTD formulation, derived directly from Maxwell's equations. The analysis is conducted at the far-infrared regime and the proposed method is validated by comparing its results with the theoretical propagation properties of the surface waves, supported onto graphene.\",\"PeriodicalId\":151955,\"journal\":{\"name\":\"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METAMATERIALS.2014.6948626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2014.6948626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前的工作介绍了石墨烯在时域的显式建模,由其表面电导率定义,作为表面边界条件,通过有效的二维横向电时域有限差分公式,直接从麦克斯韦方程导出。该分析是在远红外波段进行的,并通过将其结果与支撑在石墨烯上的表面波的理论传播特性进行比较来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigorous time-domain graphene representation as a surface boundary condition
The present work introduces the explicit modelling of graphene in the time domain, defined by its surface conductivity, as a surface boundary condition via an efficient 2D transverse electric FDTD formulation, derived directly from Maxwell's equations. The analysis is conducted at the far-infrared regime and the proposed method is validated by comparing its results with the theoretical propagation properties of the surface waves, supported onto graphene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信