rsLDA:关系学习的贝叶斯层次模型

Claudio Taranto, Nicola Di Mauro, F. Esposito
{"title":"rsLDA:关系学习的贝叶斯层次模型","authors":"Claudio Taranto, Nicola Di Mauro, F. Esposito","doi":"10.1109/ICDKE.2011.6053932","DOIUrl":null,"url":null,"abstract":"We introduce and evaluate a technique to tackle relational learning tasks combining a framework for mining relational queries with a hierarchical Bayesian model. We present the novel rsLDA algorithm that works as follows. It initially discovers a set of relevant features from the relational data useful to describe in a propositional way the examples. This corresponds to reformulate the problem from a relational representation space into an attribute-value form. Afterwards, given this new features space, a supervised version of the Latent Dirichlet Allocation model is applied in order to learn the probabilistic model. The performance of the proposed method when applied on two real-world datasets shows an improvement when compared to other methods.","PeriodicalId":377148,"journal":{"name":"2011 International Conference on Data and Knowledge Engineering (ICDKE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"rsLDA: A Bayesian hierarchical model for relational learning\",\"authors\":\"Claudio Taranto, Nicola Di Mauro, F. Esposito\",\"doi\":\"10.1109/ICDKE.2011.6053932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and evaluate a technique to tackle relational learning tasks combining a framework for mining relational queries with a hierarchical Bayesian model. We present the novel rsLDA algorithm that works as follows. It initially discovers a set of relevant features from the relational data useful to describe in a propositional way the examples. This corresponds to reformulate the problem from a relational representation space into an attribute-value form. Afterwards, given this new features space, a supervised version of the Latent Dirichlet Allocation model is applied in order to learn the probabilistic model. The performance of the proposed method when applied on two real-world datasets shows an improvement when compared to other methods.\",\"PeriodicalId\":377148,\"journal\":{\"name\":\"2011 International Conference on Data and Knowledge Engineering (ICDKE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Data and Knowledge Engineering (ICDKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDKE.2011.6053932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Data and Knowledge Engineering (ICDKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDKE.2011.6053932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们介绍并评估了一种处理关系学习任务的技术,该技术结合了挖掘关系查询的框架和分层贝叶斯模型。我们提出了一种新的rsLDA算法,其工作原理如下。它首先从关系数据中发现一组相关的特征,这些特征有助于以命题的方式描述示例。这对应于将问题从关系表示空间重新表述为属性-值形式。然后,给定这个新的特征空间,应用潜在狄利克雷分配模型的监督版本来学习概率模型。与其他方法相比,该方法在两个真实数据集上的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
rsLDA: A Bayesian hierarchical model for relational learning
We introduce and evaluate a technique to tackle relational learning tasks combining a framework for mining relational queries with a hierarchical Bayesian model. We present the novel rsLDA algorithm that works as follows. It initially discovers a set of relevant features from the relational data useful to describe in a propositional way the examples. This corresponds to reformulate the problem from a relational representation space into an attribute-value form. Afterwards, given this new features space, a supervised version of the Latent Dirichlet Allocation model is applied in order to learn the probabilistic model. The performance of the proposed method when applied on two real-world datasets shows an improvement when compared to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信