利用社交媒体来训练目标探测器

E. Chatzilari, S. Nikolopoulos, Y. Kompatsiaris, Eirini Giannakidou, A. Vakali
{"title":"利用社交媒体来训练目标探测器","authors":"E. Chatzilari, S. Nikolopoulos, Y. Kompatsiaris, Eirini Giannakidou, A. Vakali","doi":"10.1109/ICDSP.2009.5201113","DOIUrl":null,"url":null,"abstract":"The fact that most users tend to tag images emotionally rather than realistically makes social datasets inherently flawed from a computer vision perspective. On the other hand they can be particularly useful due to their social context and their potential to grow arbitrary big. Our work shows how a combination of techniques operating on both tag and visual information spaces, manages to leverage the associated weak annotations and produce region-detail training samples. In this direction we make some theoretical observations relating the robustness of the resulting models, the accuracy of the analysis algorithms and the amount of processed data. Experimental evaluation performed against manually trained object detectors reveals the strengths and weaknesses of our approach.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Leveraging social media for training object detectors\",\"authors\":\"E. Chatzilari, S. Nikolopoulos, Y. Kompatsiaris, Eirini Giannakidou, A. Vakali\",\"doi\":\"10.1109/ICDSP.2009.5201113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fact that most users tend to tag images emotionally rather than realistically makes social datasets inherently flawed from a computer vision perspective. On the other hand they can be particularly useful due to their social context and their potential to grow arbitrary big. Our work shows how a combination of techniques operating on both tag and visual information spaces, manages to leverage the associated weak annotations and produce region-detail training samples. In this direction we make some theoretical observations relating the robustness of the resulting models, the accuracy of the analysis algorithms and the amount of processed data. Experimental evaluation performed against manually trained object detectors reveals the strengths and weaknesses of our approach.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

从计算机视觉的角度来看,大多数用户倾向于情绪化地标记图像,而不是现实地标记图像,这使得社交数据集本质上存在缺陷。另一方面,由于它们的社会背景和它们任意变大的潜力,它们可能特别有用。我们的工作展示了如何结合在标签和视觉信息空间上操作的技术,设法利用相关的弱注释并产生区域细节训练样本。在这个方向上,我们对所得到的模型的稳健性、分析算法的准确性和处理的数据量进行了一些理论观察。针对人工训练的目标检测器进行的实验评估揭示了我们方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging social media for training object detectors
The fact that most users tend to tag images emotionally rather than realistically makes social datasets inherently flawed from a computer vision perspective. On the other hand they can be particularly useful due to their social context and their potential to grow arbitrary big. Our work shows how a combination of techniques operating on both tag and visual information spaces, manages to leverage the associated weak annotations and produce region-detail training samples. In this direction we make some theoretical observations relating the robustness of the resulting models, the accuracy of the analysis algorithms and the amount of processed data. Experimental evaluation performed against manually trained object detectors reveals the strengths and weaknesses of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信