幂指对求解非线性三次收敛方程的牛顿方法的改进

Jayakumar Jayaraman, M. Kalyanasundaram
{"title":"幂指对求解非线性三次收敛方程的牛顿方法的改进","authors":"Jayakumar Jayaraman, M. Kalyanasundaram","doi":"10.0000/IJAMC.2014.6.2.631","DOIUrl":null,"url":null,"abstract":"In this paper, a class of Newton-type methods known as trapezoidal power means Newton method for solving nonlinear equation is proposed.  The new methods incorporate power means in the trapezoidal integration rule along with midpoint, thus replacing  in the classical Newton method.  Some known variants can be regarded as particular cases of this method.  The order of convergence of these methods is shown to be three.  Numerical examples and their results are provided to compare the efficiency of the new methods with few other similar methods.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power means based modification of Newton’s method for solving nonlinear equations with cubic convergence\",\"authors\":\"Jayakumar Jayaraman, M. Kalyanasundaram\",\"doi\":\"10.0000/IJAMC.2014.6.2.631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of Newton-type methods known as trapezoidal power means Newton method for solving nonlinear equation is proposed.  The new methods incorporate power means in the trapezoidal integration rule along with midpoint, thus replacing  in the classical Newton method.  Some known variants can be regarded as particular cases of this method.  The order of convergence of these methods is shown to be three.  Numerical examples and their results are provided to compare the efficiency of the new methods with few other similar methods.\",\"PeriodicalId\":173223,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computation\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.0000/IJAMC.2014.6.2.631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2014.6.2.631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了求解非线性方程的一类牛顿型方法——梯形幂指牛顿法。新方法在梯形积分规则中加入了幂次积分和中点积分,取代了经典牛顿法。一些已知的变异体可以看作是这种方法的特殊情况。这些方法的收敛阶为3。最后给出了数值算例和计算结果,比较了新方法与其他几种类似方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power means based modification of Newton’s method for solving nonlinear equations with cubic convergence
In this paper, a class of Newton-type methods known as trapezoidal power means Newton method for solving nonlinear equation is proposed.  The new methods incorporate power means in the trapezoidal integration rule along with midpoint, thus replacing  in the classical Newton method.  Some known variants can be regarded as particular cases of this method.  The order of convergence of these methods is shown to be three.  Numerical examples and their results are provided to compare the efficiency of the new methods with few other similar methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信