一种优化的智能车辆多传感器融合目标检测方法

Jiayu Shen, Qingxiao Liu, Huiyan Chen
{"title":"一种优化的智能车辆多传感器融合目标检测方法","authors":"Jiayu Shen, Qingxiao Liu, Huiyan Chen","doi":"10.1109/ICITE50838.2020.9231355","DOIUrl":null,"url":null,"abstract":"An accurate and efficient environment perception system is crucial for intelligent vehicles. This study proposes an optimized 2D object detection method utilizing multi-sensor fusion to improve the performance of the environment perception system. In the sensor fusion module, a depth completion network is used to predict dense depth map, so both dense and sparse RGB-D images can be obtained. Then, an efficient object detection baseline is optimized for intelligent vehicles. This method is verified by KITTI 2D object detection dataset. The experimental results show that the proposed method can be more accurate than many latest methods on KITTI leaderboard. Meanwhile, this method consumes less inference time and shows its high efficiency.","PeriodicalId":112371,"journal":{"name":"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimized Multi-sensor Fused Object Detection Method for Intelligent Vehicles\",\"authors\":\"Jiayu Shen, Qingxiao Liu, Huiyan Chen\",\"doi\":\"10.1109/ICITE50838.2020.9231355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate and efficient environment perception system is crucial for intelligent vehicles. This study proposes an optimized 2D object detection method utilizing multi-sensor fusion to improve the performance of the environment perception system. In the sensor fusion module, a depth completion network is used to predict dense depth map, so both dense and sparse RGB-D images can be obtained. Then, an efficient object detection baseline is optimized for intelligent vehicles. This method is verified by KITTI 2D object detection dataset. The experimental results show that the proposed method can be more accurate than many latest methods on KITTI leaderboard. Meanwhile, this method consumes less inference time and shows its high efficiency.\",\"PeriodicalId\":112371,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITE50838.2020.9231355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE50838.2020.9231355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准确、高效的环境感知系统对智能汽车至关重要。本研究提出了一种利用多传感器融合优化的二维目标检测方法,以提高环境感知系统的性能。在传感器融合模块中,利用深度补全网络对密集深度图进行预测,从而获得密集和稀疏的RGB-D图像。然后,针对智能车辆优化了高效的目标检测基线。利用KITTI二维目标检测数据集对该方法进行了验证。实验结果表明,该方法比许多最新的KITTI排行榜方法更准确。同时,该方法消耗的推理时间少,效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Multi-sensor Fused Object Detection Method for Intelligent Vehicles
An accurate and efficient environment perception system is crucial for intelligent vehicles. This study proposes an optimized 2D object detection method utilizing multi-sensor fusion to improve the performance of the environment perception system. In the sensor fusion module, a depth completion network is used to predict dense depth map, so both dense and sparse RGB-D images can be obtained. Then, an efficient object detection baseline is optimized for intelligent vehicles. This method is verified by KITTI 2D object detection dataset. The experimental results show that the proposed method can be more accurate than many latest methods on KITTI leaderboard. Meanwhile, this method consumes less inference time and shows its high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信