在有限偏序集上定义的所有单调偏函数集合的有限基

A. Nozaki, Vaktang Lashkia
{"title":"在有限偏序集上定义的所有单调偏函数集合的有限基","authors":"A. Nozaki, Vaktang Lashkia","doi":"10.1109/ISMVL.1998.679518","DOIUrl":null,"url":null,"abstract":"Let X be an arbitrary poset. A partial function f with n variables defined over X is said to be monotone if the following condition is satisfied: if x/sub 1//spl les/y/sub 1/,..., x/sub m//spl les/y/sub n/, and both the values f(x/sub 1/,..., x/sub n/) and f(y/sub 1/,....y/sub n/) are defined, then f(x/sub 1/,..., x/sub n/)/spl les/f(y/sub 1/,...,y/sub n/) It is shown that the set of all monotone partial functions has a finite basis.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A finite basis of the set of all monotone partial functions defined over a finite poset\",\"authors\":\"A. Nozaki, Vaktang Lashkia\",\"doi\":\"10.1109/ISMVL.1998.679518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be an arbitrary poset. A partial function f with n variables defined over X is said to be monotone if the following condition is satisfied: if x/sub 1//spl les/y/sub 1/,..., x/sub m//spl les/y/sub n/, and both the values f(x/sub 1/,..., x/sub n/) and f(y/sub 1/,....y/sub n/) are defined, then f(x/sub 1/,..., x/sub n/)/spl les/f(y/sub 1/,...,y/sub n/) It is shown that the set of all monotone partial functions has a finite basis.\",\"PeriodicalId\":377860,\"journal\":{\"name\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1998.679518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设X是一个任意偏置集。在X上定义了n个变量的偏函数f是单调的,如果满足以下条件:如果X /下标1//spl小于/y/下标1/,…, x/下标m//spl /y/下标n/,值f(x/下标1/,…, x/下标n/)和f(y/下标1/,....Y /下标n/)有定义,则f(x/下标1/,…, x/下标n/)/spl /s /f(y/下标1/,…,y/下标n/)证明了所有单调偏函数的集合具有有限基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite basis of the set of all monotone partial functions defined over a finite poset
Let X be an arbitrary poset. A partial function f with n variables defined over X is said to be monotone if the following condition is satisfied: if x/sub 1//spl les/y/sub 1/,..., x/sub m//spl les/y/sub n/, and both the values f(x/sub 1/,..., x/sub n/) and f(y/sub 1/,....y/sub n/) are defined, then f(x/sub 1/,..., x/sub n/)/spl les/f(y/sub 1/,...,y/sub n/) It is shown that the set of all monotone partial functions has a finite basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信