ARIMA和神经网络:在美国实际国民生产总值增长率和失业率中的应用

Eleftherios Giovanis
{"title":"ARIMA和神经网络:在美国实际国民生产总值增长率和失业率中的应用","authors":"Eleftherios Giovanis","doi":"10.2139/ssrn.1368675","DOIUrl":null,"url":null,"abstract":"This paper examines the estimation and forecasting performance of ARIMA models in comparison with some of the most popular and common models of neural networks. Specifically we provide the estimation results of AR-GRNN (Generalized regression neural networks) and the AR-RBF (Radial basis function). We show that neural networks models outperform the ARIMA forecasting. We found that the best model in the case of real US GNP is the AR-GRNN and for US unemployment rate is the AR-MLP.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ARIMA and Neural Networks: An Application to the Real GNP Growth Rate and the Unemployment Rate of U.S.A.\",\"authors\":\"Eleftherios Giovanis\",\"doi\":\"10.2139/ssrn.1368675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the estimation and forecasting performance of ARIMA models in comparison with some of the most popular and common models of neural networks. Specifically we provide the estimation results of AR-GRNN (Generalized regression neural networks) and the AR-RBF (Radial basis function). We show that neural networks models outperform the ARIMA forecasting. We found that the best model in the case of real US GNP is the AR-GRNN and for US unemployment rate is the AR-MLP.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1368675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1368675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了ARIMA模型的估计和预测性能,并与一些最流行和常用的神经网络模型进行了比较。具体来说,我们提供了AR-GRNN(广义回归神经网络)和AR-RBF(径向基函数)的估计结果。我们证明神经网络模型优于ARIMA预测。我们发现,对于美国实际GNP的最佳模型是AR-GRNN,对于美国失业率的最佳模型是AR-MLP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARIMA and Neural Networks: An Application to the Real GNP Growth Rate and the Unemployment Rate of U.S.A.
This paper examines the estimation and forecasting performance of ARIMA models in comparison with some of the most popular and common models of neural networks. Specifically we provide the estimation results of AR-GRNN (Generalized regression neural networks) and the AR-RBF (Radial basis function). We show that neural networks models outperform the ARIMA forecasting. We found that the best model in the case of real US GNP is the AR-GRNN and for US unemployment rate is the AR-MLP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信