基于LSTM网络的电能计量实验室环境风险感知与预警策略

Xingyuan Wang, Chuyan Wang, Yi-ping Sun, zuming cheng
{"title":"基于LSTM网络的电能计量实验室环境风险感知与预警策略","authors":"Xingyuan Wang, Chuyan Wang, Yi-ping Sun, zuming cheng","doi":"10.1117/12.2685979","DOIUrl":null,"url":null,"abstract":"This study proposes an environmental risk perception and early warning method for metrology laboratories that combines information acquisition, feature extraction, deep learning, and bias analysis. First, various sensors are used to collect operating data from the laboratory and extract its operating characteristics. The data is then processed using long and short-term memory neural network (LSTM) to predict the laboratory's operational state. Finally, the generalized extreme value theory is employed to establish the alarm threshold based on the normal running state, enabling early risk warning of the equipment. The experimental results demonstrate that the LSTM model is highly effective, achieving stable risk prediction accuracy above 98%, surpassing other neural network models.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental risk perception and warning strategy of power metering laboratory based on LSTM network\",\"authors\":\"Xingyuan Wang, Chuyan Wang, Yi-ping Sun, zuming cheng\",\"doi\":\"10.1117/12.2685979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an environmental risk perception and early warning method for metrology laboratories that combines information acquisition, feature extraction, deep learning, and bias analysis. First, various sensors are used to collect operating data from the laboratory and extract its operating characteristics. The data is then processed using long and short-term memory neural network (LSTM) to predict the laboratory's operational state. Finally, the generalized extreme value theory is employed to establish the alarm threshold based on the normal running state, enabling early risk warning of the equipment. The experimental results demonstrate that the LSTM model is highly effective, achieving stable risk prediction accuracy above 98%, surpassing other neural network models.\",\"PeriodicalId\":305812,\"journal\":{\"name\":\"International Conference on Electronic Information Technology\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合信息获取、特征提取、深度学习和偏差分析的计量实验室环境风险感知与预警方法。首先,利用各种传感器采集实验室的运行数据,提取其运行特征。然后使用长短期记忆神经网络(LSTM)对数据进行处理,以预测实验室的运行状态。最后,利用广义极值理论,根据设备的正常运行状态建立报警阈值,实现设备的早期风险预警。实验结果表明,LSTM模型是非常有效的,其风险预测准确率稳定在98%以上,优于其他神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental risk perception and warning strategy of power metering laboratory based on LSTM network
This study proposes an environmental risk perception and early warning method for metrology laboratories that combines information acquisition, feature extraction, deep learning, and bias analysis. First, various sensors are used to collect operating data from the laboratory and extract its operating characteristics. The data is then processed using long and short-term memory neural network (LSTM) to predict the laboratory's operational state. Finally, the generalized extreme value theory is employed to establish the alarm threshold based on the normal running state, enabling early risk warning of the equipment. The experimental results demonstrate that the LSTM model is highly effective, achieving stable risk prediction accuracy above 98%, surpassing other neural network models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信