BGCC:一种基于Bloom过滤器的信息中心网络分组块缓存方法

Jiang Zhi, Jun Yu Li, Haibo Wu
{"title":"BGCC:一种基于Bloom过滤器的信息中心网络分组块缓存方法","authors":"Jiang Zhi, Jun Yu Li, Haibo Wu","doi":"10.1109/ISCC.2018.8538357","DOIUrl":null,"url":null,"abstract":"Packet-level caching is difficult to implement in the traditional caching system. The emergence of Information-centric networking (ICN) has alleviated this problem. However, the chunklevel caching is still facing severe scalability issues. In this paper, we analyze the issues which limit the implementation of chunk-level caching and propose a chunk-level caching optimization approach called BGCC. In BGCC, we reduce the consumption of fast memory by creating the index with group prefixes instead of the chunk prefixes, while the group-level popularity is also used to optimize caching decision. We evaluate the performance of our scheme through extensive simulation experiments regarding a wide range of performance metrics. The experimental results indicate BGCC can reduce the fast memory usage and achieve significant improvement in terms of server load reduction ratio, average hop reduction ratio and average cache hit ratio, compared with current chunk-level caching schemes.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BGCC: a Bloom Filter-based Grouped-Chunk Caching Approach for Information-Centric Networking\",\"authors\":\"Jiang Zhi, Jun Yu Li, Haibo Wu\",\"doi\":\"10.1109/ISCC.2018.8538357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet-level caching is difficult to implement in the traditional caching system. The emergence of Information-centric networking (ICN) has alleviated this problem. However, the chunklevel caching is still facing severe scalability issues. In this paper, we analyze the issues which limit the implementation of chunk-level caching and propose a chunk-level caching optimization approach called BGCC. In BGCC, we reduce the consumption of fast memory by creating the index with group prefixes instead of the chunk prefixes, while the group-level popularity is also used to optimize caching decision. We evaluate the performance of our scheme through extensive simulation experiments regarding a wide range of performance metrics. The experimental results indicate BGCC can reduce the fast memory usage and achieve significant improvement in terms of server load reduction ratio, average hop reduction ratio and average cache hit ratio, compared with current chunk-level caching schemes.\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

包级缓存在传统的缓存系统中是难以实现的。信息中心网络(ICN)的出现缓解了这一问题。然而,块级缓存仍然面临着严重的可伸缩性问题。在本文中,我们分析了限制块级缓存实现的问题,并提出了一种称为BGCC的块级缓存优化方法。在BGCC中,我们通过使用组前缀而不是块前缀创建索引来减少快速内存的消耗,而组级别的流行度也用于优化缓存决策。我们通过广泛的模拟实验来评估我们方案的性能,这些实验涉及广泛的性能指标。实验结果表明,与现有的块级缓存方案相比,BGCC可以减少快速内存的使用,在服务器负载减少率、平均跳数减少率和平均缓存命中率方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BGCC: a Bloom Filter-based Grouped-Chunk Caching Approach for Information-Centric Networking
Packet-level caching is difficult to implement in the traditional caching system. The emergence of Information-centric networking (ICN) has alleviated this problem. However, the chunklevel caching is still facing severe scalability issues. In this paper, we analyze the issues which limit the implementation of chunk-level caching and propose a chunk-level caching optimization approach called BGCC. In BGCC, we reduce the consumption of fast memory by creating the index with group prefixes instead of the chunk prefixes, while the group-level popularity is also used to optimize caching decision. We evaluate the performance of our scheme through extensive simulation experiments regarding a wide range of performance metrics. The experimental results indicate BGCC can reduce the fast memory usage and achieve significant improvement in terms of server load reduction ratio, average hop reduction ratio and average cache hit ratio, compared with current chunk-level caching schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信