{"title":"基于局部二值模式、频谱和韵律特征融合的笑声检测","authors":"Stefany Bedoya, T. Falk","doi":"10.1109/MMSP.2016.7813391","DOIUrl":null,"url":null,"abstract":"Today, great focus has been placed on context-aware human-machine interaction, where systems are aware not only of the surrounding environment, but also about the mental/affective state of the user. Such knowledge can allow for the interaction to become more human-like. To this end, automatic discrimination between laughter and speech has emerged as an interesting, yet challenging problem. Typically, audio-or video-based methods have been proposed in the literature; humans, however, are known to integrate both sensory modalities during conversation and/or interaction. As such, this paper explores the fusion of support vector machine classifiers trained on local binary pattern (LBP) video features, as well as speech spectral and prosodic features as a way of improving laughter detection performance. Experimental results on the publicly-available MAHNOB Laughter database show that the proposed audio-visual fusion scheme can achieve a laughter detection accuracy of 93.3%, thus outperforming systems trained on audio or visual features alone.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Laughter detection based on the fusion of local binary patterns, spectral and prosodic features\",\"authors\":\"Stefany Bedoya, T. Falk\",\"doi\":\"10.1109/MMSP.2016.7813391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, great focus has been placed on context-aware human-machine interaction, where systems are aware not only of the surrounding environment, but also about the mental/affective state of the user. Such knowledge can allow for the interaction to become more human-like. To this end, automatic discrimination between laughter and speech has emerged as an interesting, yet challenging problem. Typically, audio-or video-based methods have been proposed in the literature; humans, however, are known to integrate both sensory modalities during conversation and/or interaction. As such, this paper explores the fusion of support vector machine classifiers trained on local binary pattern (LBP) video features, as well as speech spectral and prosodic features as a way of improving laughter detection performance. Experimental results on the publicly-available MAHNOB Laughter database show that the proposed audio-visual fusion scheme can achieve a laughter detection accuracy of 93.3%, thus outperforming systems trained on audio or visual features alone.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laughter detection based on the fusion of local binary patterns, spectral and prosodic features
Today, great focus has been placed on context-aware human-machine interaction, where systems are aware not only of the surrounding environment, but also about the mental/affective state of the user. Such knowledge can allow for the interaction to become more human-like. To this end, automatic discrimination between laughter and speech has emerged as an interesting, yet challenging problem. Typically, audio-or video-based methods have been proposed in the literature; humans, however, are known to integrate both sensory modalities during conversation and/or interaction. As such, this paper explores the fusion of support vector machine classifiers trained on local binary pattern (LBP) video features, as well as speech spectral and prosodic features as a way of improving laughter detection performance. Experimental results on the publicly-available MAHNOB Laughter database show that the proposed audio-visual fusion scheme can achieve a laughter detection accuracy of 93.3%, thus outperforming systems trained on audio or visual features alone.