变分自编码器(vae)在滚动轴承损伤检测中的应用

C. Lindley, T. Rogers, R. Dwyer-Joyce, N. Dervilis, K. Worden
{"title":"变分自编码器(vae)在滚动轴承损伤检测中的应用","authors":"C. Lindley, T. Rogers, R. Dwyer-Joyce, N. Dervilis, K. Worden","doi":"10.12783/shm2021/36281","DOIUrl":null,"url":null,"abstract":"In structural health monitoring (SHM) and condition monitoring (CM) applications, the expense of testing programmes may be too high to obtain adequate datasets. When limited by the number of available data samples, one may rely on dimensional reduction methods to proceed with a meaningful statistical and probabilistic analysis. In this work, some state-of-the-art dimensionality-reduction techniques were investigated as part of a simple ball-bearing damage detection problem. A variational auto-encoder (VAE) was compared to other methods, based on their capability to generate low-dimensional representations of the data. Unlike other common alternatives, such as principal component analysis (PCA) or auto-encoding (AE) networks, the VAE introduces a probabilistic framework via the latent embeddings. A well-defined distribution is thereby constructed on the latent variables, making the transformed dataset an optimal one for subsequent pattern recognition analysis. The results demonstrated an increase in classification performance given the low-dimensional representation generated by the VAE.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS\",\"authors\":\"C. Lindley, T. Rogers, R. Dwyer-Joyce, N. Dervilis, K. Worden\",\"doi\":\"10.12783/shm2021/36281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In structural health monitoring (SHM) and condition monitoring (CM) applications, the expense of testing programmes may be too high to obtain adequate datasets. When limited by the number of available data samples, one may rely on dimensional reduction methods to proceed with a meaningful statistical and probabilistic analysis. In this work, some state-of-the-art dimensionality-reduction techniques were investigated as part of a simple ball-bearing damage detection problem. A variational auto-encoder (VAE) was compared to other methods, based on their capability to generate low-dimensional representations of the data. Unlike other common alternatives, such as principal component analysis (PCA) or auto-encoding (AE) networks, the VAE introduces a probabilistic framework via the latent embeddings. A well-defined distribution is thereby constructed on the latent variables, making the transformed dataset an optimal one for subsequent pattern recognition analysis. The results demonstrated an increase in classification performance given the low-dimensional representation generated by the VAE.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在结构健康监测(SHM)和状态监测(CM)应用中,测试程序的费用可能太高,无法获得足够的数据集。当受到可用数据样本数量的限制时,可以依靠降维方法进行有意义的统计和概率分析。在这项工作中,一些最先进的降维技术作为一个简单的滚珠轴承损伤检测问题的一部分进行了研究。根据变分自编码器(VAE)生成数据低维表示的能力,将其与其他方法进行了比较。与其他常见的替代方法不同,例如主成分分析(PCA)或自动编码(AE)网络,VAE通过潜在嵌入引入了一个概率框架。从而在潜在变量上构建一个定义良好的分布,使转换后的数据集成为后续模式识别分析的最佳数据集。结果表明,考虑到由VAE生成的低维表示,分类性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS
In structural health monitoring (SHM) and condition monitoring (CM) applications, the expense of testing programmes may be too high to obtain adequate datasets. When limited by the number of available data samples, one may rely on dimensional reduction methods to proceed with a meaningful statistical and probabilistic analysis. In this work, some state-of-the-art dimensionality-reduction techniques were investigated as part of a simple ball-bearing damage detection problem. A variational auto-encoder (VAE) was compared to other methods, based on their capability to generate low-dimensional representations of the data. Unlike other common alternatives, such as principal component analysis (PCA) or auto-encoding (AE) networks, the VAE introduces a probabilistic framework via the latent embeddings. A well-defined distribution is thereby constructed on the latent variables, making the transformed dataset an optimal one for subsequent pattern recognition analysis. The results demonstrated an increase in classification performance given the low-dimensional representation generated by the VAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信