单规则保长重写系统与有理转导

M. Latteux, Yves Roos
{"title":"单规则保长重写系统与有理转导","authors":"M. Latteux, Yves Roos","doi":"10.1051/ita/2013044","DOIUrl":null,"url":null,"abstract":"We address the problem to know whether the relation induced by a one-rule length-preserving rewrite system is rational. We partially answer to a conjecture of Eric Lilin who conjectured in 1991 that a one-rule length-preserving rewrite system is a rational transduction if and only if the left-hand side u and the right-hand side v of the rule of the system are not quasi-conjugate or are equal, that means if u and v are distinct, there do not exist words x , y and z such that u  = xyz and v  = zyx . We prove the only if part of this conjecture and identify two non trivial cases where the if part is satisfied.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"One-Rule Length-Preserving Rewrite Systems and Rational Transductions\",\"authors\":\"M. Latteux, Yves Roos\",\"doi\":\"10.1051/ita/2013044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem to know whether the relation induced by a one-rule length-preserving rewrite system is rational. We partially answer to a conjecture of Eric Lilin who conjectured in 1991 that a one-rule length-preserving rewrite system is a rational transduction if and only if the left-hand side u and the right-hand side v of the rule of the system are not quasi-conjugate or are equal, that means if u and v are distinct, there do not exist words x , y and z such that u  = xyz and v  = zyx . We prove the only if part of this conjecture and identify two non trivial cases where the if part is satisfied.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2013044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2013044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了单规则保长重写系统所产生的关系是否合理。我们部分地回答了Eric Lilin在1991年的一个猜想,即当且仅当一个单规则保持长度的重写系统的左边u和右边v不是拟共轭的或相等的,即如果u和v是不同的,则不存在使得u = xyz和v = zyx的单词x, y和z。我们证明了这个猜想的唯当部分,并找出了两个非平凡的情况,其中唯当部分满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Rule Length-Preserving Rewrite Systems and Rational Transductions
We address the problem to know whether the relation induced by a one-rule length-preserving rewrite system is rational. We partially answer to a conjecture of Eric Lilin who conjectured in 1991 that a one-rule length-preserving rewrite system is a rational transduction if and only if the left-hand side u and the right-hand side v of the rule of the system are not quasi-conjugate or are equal, that means if u and v are distinct, there do not exist words x , y and z such that u  = xyz and v  = zyx . We prove the only if part of this conjecture and identify two non trivial cases where the if part is satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信