快速探测:在数字环境中使用物理支架的快速物理原型

Abhijeet S. Raina, S. Vyas, M. Ebert, Vinayak R. Krishnamurthy
{"title":"快速探测:在数字环境中使用物理支架的快速物理原型","authors":"Abhijeet S. Raina, S. Vyas, M. Ebert, Vinayak R. Krishnamurthy","doi":"10.1115/detc2022-91023","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce a novel prototyping workflow, QuickProbe, that enables a user to create quick-and-dirty prototypes taking direct inspiration from existing physical objects. Our workflow is inspired by the notion of prototyping-in-context using physical scaffolds in digital environments. To achieve this we introduce a simple kinesthetic-geometric curve representation wherein we integrated the geometric representation of the curve with the virtual kinesthetic feedback. We test the efficacy of this kinesthetic-geometric curve representation through a qualitative user study conducted with ten participants. In this study, users were asked to generate wire-frame curve networks on top of the physical shapes by sampling multiple control points along the surface. We conducted two different sets of experiments in this work. In the first set of experiments, users were tasked with tracing the physical shape of the object. In the second set of experiments, the goal was to explore different artistic designs that the user could draw using the physical scaffolding of the shapes. Through our user studies, we showed the variety of designs that the users were able to create. We also evaluated the similarities and differences we observed between the two different sets of experiments. We further discuss the user feedback and the possible design scenarios where our QuickProbe workflow can be used.","PeriodicalId":382970,"journal":{"name":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuickProbe: Quick Physical Prototyping-in-Context Using Physical Scaffolds in Digital Environments\",\"authors\":\"Abhijeet S. Raina, S. Vyas, M. Ebert, Vinayak R. Krishnamurthy\",\"doi\":\"10.1115/detc2022-91023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we introduce a novel prototyping workflow, QuickProbe, that enables a user to create quick-and-dirty prototypes taking direct inspiration from existing physical objects. Our workflow is inspired by the notion of prototyping-in-context using physical scaffolds in digital environments. To achieve this we introduce a simple kinesthetic-geometric curve representation wherein we integrated the geometric representation of the curve with the virtual kinesthetic feedback. We test the efficacy of this kinesthetic-geometric curve representation through a qualitative user study conducted with ten participants. In this study, users were asked to generate wire-frame curve networks on top of the physical shapes by sampling multiple control points along the surface. We conducted two different sets of experiments in this work. In the first set of experiments, users were tasked with tracing the physical shape of the object. In the second set of experiments, the goal was to explore different artistic designs that the user could draw using the physical scaffolding of the shapes. Through our user studies, we showed the variety of designs that the users were able to create. We also evaluated the similarities and differences we observed between the two different sets of experiments. We further discuss the user feedback and the possible design scenarios where our QuickProbe workflow can be used.\",\"PeriodicalId\":382970,\"journal\":{\"name\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2022-91023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-91023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新的原型工作流程,QuickProbe,它使用户能够从现有的物理对象中直接获得灵感,创建快速和肮脏的原型。我们的工作流程的灵感来自于在数字环境中使用物理支架的原型概念。为了实现这一点,我们引入了一个简单的动觉几何曲线表示,其中我们将曲线的几何表示与虚拟动觉反馈相结合。我们通过一项有10名参与者的定性用户研究来测试这种运动-几何曲线表征的有效性。在这项研究中,用户被要求通过沿表面采样多个控制点,在物理形状的顶部生成线框曲线网络。在这项工作中,我们进行了两组不同的实验。在第一组实验中,用户的任务是追踪物体的物理形状。在第二组实验中,目标是探索不同的艺术设计,用户可以使用形状的物理支架来绘制。通过我们的用户研究,我们展示了用户能够创造的各种设计。我们还评估了我们在两组不同的实验中观察到的异同。我们进一步讨论了用户反馈和QuickProbe工作流可以使用的可能设计场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuickProbe: Quick Physical Prototyping-in-Context Using Physical Scaffolds in Digital Environments
In this paper, we introduce a novel prototyping workflow, QuickProbe, that enables a user to create quick-and-dirty prototypes taking direct inspiration from existing physical objects. Our workflow is inspired by the notion of prototyping-in-context using physical scaffolds in digital environments. To achieve this we introduce a simple kinesthetic-geometric curve representation wherein we integrated the geometric representation of the curve with the virtual kinesthetic feedback. We test the efficacy of this kinesthetic-geometric curve representation through a qualitative user study conducted with ten participants. In this study, users were asked to generate wire-frame curve networks on top of the physical shapes by sampling multiple control points along the surface. We conducted two different sets of experiments in this work. In the first set of experiments, users were tasked with tracing the physical shape of the object. In the second set of experiments, the goal was to explore different artistic designs that the user could draw using the physical scaffolding of the shapes. Through our user studies, we showed the variety of designs that the users were able to create. We also evaluated the similarities and differences we observed between the two different sets of experiments. We further discuss the user feedback and the possible design scenarios where our QuickProbe workflow can be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信