自遮挡树冠层骨架提取的遮挡推理

Chung Hee Kim, G. Kantor
{"title":"自遮挡树冠层骨架提取的遮挡推理","authors":"Chung Hee Kim, G. Kantor","doi":"10.1109/ICRA48891.2023.10160650","DOIUrl":null,"url":null,"abstract":"In this work, we present a method to extract the skeleton of a self-occluded tree canopy by estimating the unobserved structures of the tree. A tree skeleton compactly describes the topological structure and contains useful information such as branch geometry, positions and hierarchy. This can be critical to planning contact interactions for agricultural manipulation, yet is difficult to gain due to occlusion by leaves, fruits and other branches. Our method uses an instance segmentation network to detect visible trunk, branches, and twigs. Then, based on the observed tree structures, we build a custom 3D likelihood map in the form of an occupancy grid to hypothesize on the presence of occluded skeletons through a series of minimum cost path searches. We show that our method outperforms baseline methods in highly occluded scenes, demonstrated through a set of experiments on a synthetic tree dataset. Qualitative results are also presented on a real tree dataset collected from the field.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree Canopies\",\"authors\":\"Chung Hee Kim, G. Kantor\",\"doi\":\"10.1109/ICRA48891.2023.10160650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a method to extract the skeleton of a self-occluded tree canopy by estimating the unobserved structures of the tree. A tree skeleton compactly describes the topological structure and contains useful information such as branch geometry, positions and hierarchy. This can be critical to planning contact interactions for agricultural manipulation, yet is difficult to gain due to occlusion by leaves, fruits and other branches. Our method uses an instance segmentation network to detect visible trunk, branches, and twigs. Then, based on the observed tree structures, we build a custom 3D likelihood map in the form of an occupancy grid to hypothesize on the presence of occluded skeletons through a series of minimum cost path searches. We show that our method outperforms baseline methods in highly occluded scenes, demonstrated through a set of experiments on a synthetic tree dataset. Qualitative results are also presented on a real tree dataset collected from the field.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种通过估计树木的未观察到的结构来提取自遮挡树冠骨架的方法。树骨架紧凑地描述了拓扑结构,并包含有用的信息,如分支几何形状、位置和层次结构。这对于规划农业操作的接触交互至关重要,但由于树叶、果实和其他树枝的遮挡,很难获得。我们的方法使用实例分割网络来检测可见的主干、分支和小枝。然后,基于观察到的树结构,我们以占用网格的形式构建一个自定义的3D似然图,通过一系列最小代价路径搜索来假设遮挡骨骼的存在。我们通过在合成树数据集上的一组实验证明,我们的方法在高度遮挡的场景中优于基线方法。定性结果也给出了从现场收集的真实树数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree Canopies
In this work, we present a method to extract the skeleton of a self-occluded tree canopy by estimating the unobserved structures of the tree. A tree skeleton compactly describes the topological structure and contains useful information such as branch geometry, positions and hierarchy. This can be critical to planning contact interactions for agricultural manipulation, yet is difficult to gain due to occlusion by leaves, fruits and other branches. Our method uses an instance segmentation network to detect visible trunk, branches, and twigs. Then, based on the observed tree structures, we build a custom 3D likelihood map in the form of an occupancy grid to hypothesize on the presence of occluded skeletons through a series of minimum cost path searches. We show that our method outperforms baseline methods in highly occluded scenes, demonstrated through a set of experiments on a synthetic tree dataset. Qualitative results are also presented on a real tree dataset collected from the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信