不完全数据的自适应模糊分类

L. Yao, Kuei-Sung Weng, Ren-Wei Chang
{"title":"不完全数据的自适应模糊分类","authors":"L. Yao, Kuei-Sung Weng, Ren-Wei Chang","doi":"10.1109/ACIIDS.2009.58","DOIUrl":null,"url":null,"abstract":"For solving the incomplete data problem of missing feature values in prototype data, various strategies were proposed. In this paper, two improved approaches are proposed to estimate the missing values of incomplete data. The two approaches are based on combining the adaptive volume Gustafson-Kessel algorithm (GKA) and the nearest vector features under the distance norm evaluated by complete data. The GKA with adaptive volume is applied for clustering and classifying the results. At last, compared the result with other strategies, and the computer simulations show that the improved strategies provide superior effects.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Classification of Incomplete Data with Adaptive Volume\",\"authors\":\"L. Yao, Kuei-Sung Weng, Ren-Wei Chang\",\"doi\":\"10.1109/ACIIDS.2009.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving the incomplete data problem of missing feature values in prototype data, various strategies were proposed. In this paper, two improved approaches are proposed to estimate the missing values of incomplete data. The two approaches are based on combining the adaptive volume Gustafson-Kessel algorithm (GKA) and the nearest vector features under the distance norm evaluated by complete data. The GKA with adaptive volume is applied for clustering and classifying the results. At last, compared the result with other strategies, and the computer simulations show that the improved strategies provide superior effects.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对原型数据中缺失特征值的不完全数据问题,提出了多种策略。本文提出了两种估计不完全数据缺失值的改进方法。这两种方法都是基于自适应体积Gustafson-Kessel算法(GKA)和在完整数据评估的距离范数下的最近向量特征相结合。采用具有自适应体积的GKA对结果进行聚类和分类。最后,将改进后的策略与其他策略进行了比较,并进行了计算机仿真,结果表明改进后的策略具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Classification of Incomplete Data with Adaptive Volume
For solving the incomplete data problem of missing feature values in prototype data, various strategies were proposed. In this paper, two improved approaches are proposed to estimate the missing values of incomplete data. The two approaches are based on combining the adaptive volume Gustafson-Kessel algorithm (GKA) and the nearest vector features under the distance norm evaluated by complete data. The GKA with adaptive volume is applied for clustering and classifying the results. At last, compared the result with other strategies, and the computer simulations show that the improved strategies provide superior effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信