Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak
{"title":"基于数据驱动稳定裕度的智能故障分类方法","authors":"Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak","doi":"10.1109/IAI50351.2020.9262218","DOIUrl":null,"url":null,"abstract":"Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Fault Classification Method Based on Data-Driven Stability Margin\",\"authors\":\"Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak\",\"doi\":\"10.1109/IAI50351.2020.9262218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Intelligent Fault Classification Method Based on Data-Driven Stability Margin
Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.