基于Wi-Fi CSI的LSTM网络人类手语识别

Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, Houda Harkat, Kulasekharan Narasingamurthi
{"title":"基于Wi-Fi CSI的LSTM网络人类手语识别","authors":"Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, Houda Harkat, Kulasekharan Narasingamurthi","doi":"10.1109/IAICT52856.2021.9532548","DOIUrl":null,"url":null,"abstract":"Human sign language gesture recognition is an emerging application in the domain of Wi-Fi-based recognition. The recognition application utilizes the Channel State Information (CSI) of the Wi-Fi signal and captures the human gestures as signal amplitude and phase values. Most existing gesture recognition studies utilize only the amplitude values ignoring the phase information. Few works use both amplitude and phase information for recognition application. Besides, the existing studies adopt deep learning networks, especially Convolutional Neural Network (CNN), to improve recognition performance better. This motivates the present work to study the influence of using (i) amplitude values and (ii) amplitude and phase values together, using the Long Short-Term Memory (LSTM) network, as an alternate for CNN. Moreover, the proposed LSTM framework is fed with the CSI values without much pre-processing applied on it, except standardizing the data to make it more suitable for classification. This paper applies the proposed LSTM framework on a public sign language gesture dataset, SignFi with Adam and SGDM optimizer and analyses the performance with increasing hidden units. LSTM reported better recognition performance using Adam with 150 hidden units, and reported 99.8%, 99.5%, 99.4% and 78.0% for lab 276, home 276, lab+home 276 and lab 150 datasets, respectively.","PeriodicalId":416542,"journal":{"name":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wi-Fi CSI Based Human Sign Language Recognition using LSTM Network\",\"authors\":\"Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, Houda Harkat, Kulasekharan Narasingamurthi\",\"doi\":\"10.1109/IAICT52856.2021.9532548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human sign language gesture recognition is an emerging application in the domain of Wi-Fi-based recognition. The recognition application utilizes the Channel State Information (CSI) of the Wi-Fi signal and captures the human gestures as signal amplitude and phase values. Most existing gesture recognition studies utilize only the amplitude values ignoring the phase information. Few works use both amplitude and phase information for recognition application. Besides, the existing studies adopt deep learning networks, especially Convolutional Neural Network (CNN), to improve recognition performance better. This motivates the present work to study the influence of using (i) amplitude values and (ii) amplitude and phase values together, using the Long Short-Term Memory (LSTM) network, as an alternate for CNN. Moreover, the proposed LSTM framework is fed with the CSI values without much pre-processing applied on it, except standardizing the data to make it more suitable for classification. This paper applies the proposed LSTM framework on a public sign language gesture dataset, SignFi with Adam and SGDM optimizer and analyses the performance with increasing hidden units. LSTM reported better recognition performance using Adam with 150 hidden units, and reported 99.8%, 99.5%, 99.4% and 78.0% for lab 276, home 276, lab+home 276 and lab 150 datasets, respectively.\",\"PeriodicalId\":416542,\"journal\":{\"name\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT52856.2021.9532548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT52856.2021.9532548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人类手语手势识别是基于wi - fi识别领域的一项新兴应用。该识别应用程序利用Wi-Fi信号的信道状态信息(CSI),以信号幅度和相位值捕获人类手势。现有的手势识别研究大多只利用振幅值,忽略了相位信息。很少有作品同时使用幅度和相位信息进行识别。此外,现有研究采用深度学习网络,特别是卷积神经网络(CNN)来更好地提高识别性能。这促使本研究使用长短期记忆(LSTM)网络作为CNN的替代品,研究(i)幅度值和(ii)幅度和相位值一起使用的影响。此外,所提出的LSTM框架除了对数据进行标准化处理以使其更适合分类外,没有进行过多的预处理。本文将提出的LSTM框架应用于公共手语手势数据集SignFi,并结合Adam和SGDM优化器,分析了增加隐藏单元的性能。LSTM报告了使用Adam的150个隐藏单元时更好的识别性能,在lab 276, home 276, lab+home 276和lab 150数据集上分别报告了99.8%,99.5%,99.4%和78.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wi-Fi CSI Based Human Sign Language Recognition using LSTM Network
Human sign language gesture recognition is an emerging application in the domain of Wi-Fi-based recognition. The recognition application utilizes the Channel State Information (CSI) of the Wi-Fi signal and captures the human gestures as signal amplitude and phase values. Most existing gesture recognition studies utilize only the amplitude values ignoring the phase information. Few works use both amplitude and phase information for recognition application. Besides, the existing studies adopt deep learning networks, especially Convolutional Neural Network (CNN), to improve recognition performance better. This motivates the present work to study the influence of using (i) amplitude values and (ii) amplitude and phase values together, using the Long Short-Term Memory (LSTM) network, as an alternate for CNN. Moreover, the proposed LSTM framework is fed with the CSI values without much pre-processing applied on it, except standardizing the data to make it more suitable for classification. This paper applies the proposed LSTM framework on a public sign language gesture dataset, SignFi with Adam and SGDM optimizer and analyses the performance with increasing hidden units. LSTM reported better recognition performance using Adam with 150 hidden units, and reported 99.8%, 99.5%, 99.4% and 78.0% for lab 276, home 276, lab+home 276 and lab 150 datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信