基于神经网络的光纤陀螺温度偏差补偿数据预处理优化

B. Klimkovich
{"title":"基于神经网络的光纤陀螺温度偏差补偿数据预处理优化","authors":"B. Klimkovich","doi":"10.23919/icins43215.2020.9133956","DOIUrl":null,"url":null,"abstract":"Estimated formulas for calculating noise of the type “random walk” of algorithmic compensation for the bias of the gyroscope are obtained. An example of assessing the statistical significance of factors in calibrating the bias of a fiber-optic gyroscope in the operating temperature range and various rates of temperature change is given. It is shown, that the random error of temperature sensors can play a decisive role in the noise of the “random walk” type of algorithmic compensation of the gyroscope bias and exceed the gyroscopic noise. An example of obtaining a regression dependence of the algorithmic compensation of the bias of the gyroscope using a neural network with a multilayer perceptron is given. The factors affecting the choice of the time constant of the differentiating low-pass temperature filter are considered. The experimental dependences of the random error of algorithmic compensation for temperature sensors with various random errors are presented and the necessity of using temperature sensors with a minimum random error is demonstrated.","PeriodicalId":127936,"journal":{"name":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Data Pre-Processing for Compensation of Temperature Dependence of FOG bias by a Neural Network\",\"authors\":\"B. Klimkovich\",\"doi\":\"10.23919/icins43215.2020.9133956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimated formulas for calculating noise of the type “random walk” of algorithmic compensation for the bias of the gyroscope are obtained. An example of assessing the statistical significance of factors in calibrating the bias of a fiber-optic gyroscope in the operating temperature range and various rates of temperature change is given. It is shown, that the random error of temperature sensors can play a decisive role in the noise of the “random walk” type of algorithmic compensation of the gyroscope bias and exceed the gyroscopic noise. An example of obtaining a regression dependence of the algorithmic compensation of the bias of the gyroscope using a neural network with a multilayer perceptron is given. The factors affecting the choice of the time constant of the differentiating low-pass temperature filter are considered. The experimental dependences of the random error of algorithmic compensation for temperature sensors with various random errors are presented and the necessity of using temperature sensors with a minimum random error is demonstrated.\",\"PeriodicalId\":127936,\"journal\":{\"name\":\"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/icins43215.2020.9133956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/icins43215.2020.9133956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了陀螺仪偏置补偿算法中“随机游走”型噪声的估计公式。给出了在工作温度范围和不同温度变化率下,评定光纤陀螺仪偏置校正中各因素的统计显著性的一个实例。结果表明,温度传感器的随机误差对“随机游走”式陀螺仪偏置补偿算法的噪声起决定性作用,并超过陀螺仪噪声。给出了利用多层感知器的神经网络求解陀螺仪偏置补偿算法的回归依赖关系的实例。考虑了影响微分低通温度滤波器时间常数选择的因素。给出了各种随机误差温度传感器的随机误差补偿算法的实验依赖关系,并论证了使用随机误差最小的温度传感器的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Data Pre-Processing for Compensation of Temperature Dependence of FOG bias by a Neural Network
Estimated formulas for calculating noise of the type “random walk” of algorithmic compensation for the bias of the gyroscope are obtained. An example of assessing the statistical significance of factors in calibrating the bias of a fiber-optic gyroscope in the operating temperature range and various rates of temperature change is given. It is shown, that the random error of temperature sensors can play a decisive role in the noise of the “random walk” type of algorithmic compensation of the gyroscope bias and exceed the gyroscopic noise. An example of obtaining a regression dependence of the algorithmic compensation of the bias of the gyroscope using a neural network with a multilayer perceptron is given. The factors affecting the choice of the time constant of the differentiating low-pass temperature filter are considered. The experimental dependences of the random error of algorithmic compensation for temperature sensors with various random errors are presented and the necessity of using temperature sensors with a minimum random error is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信