一种用于图像分割的分层分布式遗传算法

Hanchuan Peng, Fuhui Long, Z. Chi, Wanchi Su
{"title":"一种用于图像分割的分层分布式遗传算法","authors":"Hanchuan Peng, Fuhui Long, Z. Chi, Wanchi Su","doi":"10.1109/CEC.2000.870306","DOIUrl":null,"url":null,"abstract":"A novel hierarchical distributed genetic algorithm is proposed for image segmentation. Firstly, a technique of histogram dichotomy is proposed to explore the statistical property of input image and produce a hierarchical quantization image. Then a hierarchical distributed genetic algorithm (HDGA) is imposed on the quantized image to explore the spatial connectivity and produce final segmentation result. HDGA is a major improvement of the original distributed genetic algorithm (DGA) and multiscale distributed genetic algorithm (MDGA) in four aspects: (1) HDGA does not require the a priori number of image regions, however it can effectively and adaptively control the segmentation quality; (2) the chromosome structure is revised from the original label (multilabel)-condition-fitness format to a more compact (storage-efficient) label-fitness format; (3) the fitness function is revised to utilize the spatial connectivity, but not the original \"reconstruction\" error; (4) three revised genetic operations are presented to make the algorithm computation-efficient. Our experiments give proofs for the advantages of HDGA.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A hierarchical distributed genetic algorithm for image segmentation\",\"authors\":\"Hanchuan Peng, Fuhui Long, Z. Chi, Wanchi Su\",\"doi\":\"10.1109/CEC.2000.870306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel hierarchical distributed genetic algorithm is proposed for image segmentation. Firstly, a technique of histogram dichotomy is proposed to explore the statistical property of input image and produce a hierarchical quantization image. Then a hierarchical distributed genetic algorithm (HDGA) is imposed on the quantized image to explore the spatial connectivity and produce final segmentation result. HDGA is a major improvement of the original distributed genetic algorithm (DGA) and multiscale distributed genetic algorithm (MDGA) in four aspects: (1) HDGA does not require the a priori number of image regions, however it can effectively and adaptively control the segmentation quality; (2) the chromosome structure is revised from the original label (multilabel)-condition-fitness format to a more compact (storage-efficient) label-fitness format; (3) the fitness function is revised to utilize the spatial connectivity, but not the original \\\"reconstruction\\\" error; (4) three revised genetic operations are presented to make the algorithm computation-efficient. Our experiments give proofs for the advantages of HDGA.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种新的分层分布式遗传算法用于图像分割。首先,提出了一种直方图二分类技术来挖掘输入图像的统计特性并生成分层量化图像。然后利用层次分布遗传算法(HDGA)对量化后的图像进行空间连通性分析,得到最终的分割结果。HDGA是对原有分布式遗传算法(DGA)和多尺度分布式遗传算法(MDGA)的重大改进,主要表现在四个方面:(1)HDGA不需要先验的图像区域数,但能有效地自适应控制分割质量;(2)染色体结构由原来的标签(多标签)-条件-适应度格式修改为更紧凑(存储效率高)的标签-适应度格式;(3)修正适应度函数,利用空间连通性,而不是原始的“重建”误差;(4)提出了三种改进的遗传操作,提高了算法的计算效率。实验证明了HDGA的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical distributed genetic algorithm for image segmentation
A novel hierarchical distributed genetic algorithm is proposed for image segmentation. Firstly, a technique of histogram dichotomy is proposed to explore the statistical property of input image and produce a hierarchical quantization image. Then a hierarchical distributed genetic algorithm (HDGA) is imposed on the quantized image to explore the spatial connectivity and produce final segmentation result. HDGA is a major improvement of the original distributed genetic algorithm (DGA) and multiscale distributed genetic algorithm (MDGA) in four aspects: (1) HDGA does not require the a priori number of image regions, however it can effectively and adaptively control the segmentation quality; (2) the chromosome structure is revised from the original label (multilabel)-condition-fitness format to a more compact (storage-efficient) label-fitness format; (3) the fitness function is revised to utilize the spatial connectivity, but not the original "reconstruction" error; (4) three revised genetic operations are presented to make the algorithm computation-efficient. Our experiments give proofs for the advantages of HDGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信