图像失真分类的特征选择

Saad Merrouche, Dimitrije Bujaković, M. Andric, Boban P. Bondzulic
{"title":"图像失真分类的特征选择","authors":"Saad Merrouche, Dimitrije Bujaković, M. Andric, Boban P. Bondzulic","doi":"10.1109/NEUREL.2018.8586989","DOIUrl":null,"url":null,"abstract":"In this research, the spatial local mean subtraction contrast normalized coefficients are selected in order to achieve the classification of image distortion type. In order to achieve the feature selection, these coefficients and their products are calculated through four spatial orientations, which gives 18 features. Two methods for feature selection are applied in order to select a smaller number of features. Bhattacharyya distance is used as a measure that quantifies separability in the feature domain. The obtained results show that using methods for feature selection reduce the number of features and make the image distortion classification more robust.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Selection for Image Distortion Classification\",\"authors\":\"Saad Merrouche, Dimitrije Bujaković, M. Andric, Boban P. Bondzulic\",\"doi\":\"10.1109/NEUREL.2018.8586989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the spatial local mean subtraction contrast normalized coefficients are selected in order to achieve the classification of image distortion type. In order to achieve the feature selection, these coefficients and their products are calculated through four spatial orientations, which gives 18 features. Two methods for feature selection are applied in order to select a smaller number of features. Bhattacharyya distance is used as a measure that quantifies separability in the feature domain. The obtained results show that using methods for feature selection reduce the number of features and make the image distortion classification more robust.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8586989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究选择空间局部均值相减对比度归一化系数来实现图像畸变类型的分类。为了实现特征选择,通过四个空间方向计算这些系数及其乘积,得到18个特征。为了选择较少数量的特征,采用了两种特征选择方法。Bhattacharyya距离被用作量化特征域中可分性的度量。结果表明,采用特征选择方法减少了特征数量,使图像失真分类更加鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Image Distortion Classification
In this research, the spatial local mean subtraction contrast normalized coefficients are selected in order to achieve the classification of image distortion type. In order to achieve the feature selection, these coefficients and their products are calculated through four spatial orientations, which gives 18 features. Two methods for feature selection are applied in order to select a smaller number of features. Bhattacharyya distance is used as a measure that quantifies separability in the feature domain. The obtained results show that using methods for feature selection reduce the number of features and make the image distortion classification more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信