Reynold Cheng, Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Goce Trajcevski, Andreas Züfle
{"title":"管理空间和时空数据中的不确定性","authors":"Reynold Cheng, Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Goce Trajcevski, Andreas Züfle","doi":"10.1109/ICDE.2014.6816766","DOIUrl":null,"url":null,"abstract":"Location-related data has a tremendous impact in many applications of high societal relevance and its growing volume from heterogeneous sources is one true example of a Big Data [1]. An inherent property of any spatio-temporal dataset is uncertainty due to various sources of imprecision. This tutorial provides a comprehensive overview of the different challenges involved in managing uncertain spatial and spatio-temporal data and presents state-of-the-art techniques for addressing them.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Managing uncertainty in spatial and spatio-temporal data\",\"authors\":\"Reynold Cheng, Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Goce Trajcevski, Andreas Züfle\",\"doi\":\"10.1109/ICDE.2014.6816766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-related data has a tremendous impact in many applications of high societal relevance and its growing volume from heterogeneous sources is one true example of a Big Data [1]. An inherent property of any spatio-temporal dataset is uncertainty due to various sources of imprecision. This tutorial provides a comprehensive overview of the different challenges involved in managing uncertain spatial and spatio-temporal data and presents state-of-the-art techniques for addressing them.\",\"PeriodicalId\":159130,\"journal\":{\"name\":\"2014 IEEE 30th International Conference on Data Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 30th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2014.6816766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Managing uncertainty in spatial and spatio-temporal data
Location-related data has a tremendous impact in many applications of high societal relevance and its growing volume from heterogeneous sources is one true example of a Big Data [1]. An inherent property of any spatio-temporal dataset is uncertainty due to various sources of imprecision. This tutorial provides a comprehensive overview of the different challenges involved in managing uncertain spatial and spatio-temporal data and presents state-of-the-art techniques for addressing them.